第五年 DTC 数据技术嘉年华归来

6282159558224092d4845364b812c5df.gif

作者 | JiekeXu

来源 |公众号 JiekeXu DBA之路(ID: JiekeXu_IT)

如需转载请联系授权 | (个人微信 ID:JiekeXu_DBA)

大家好,我是 JiekeXu,江湖人称“强哥”,很高兴又和大家见面了,今天和大家一起来看看 第五年 DTC 数据技术嘉年华归来,欢迎点击上方蓝字“JiekeXu DBA之路”关注我的公众号,标星或置顶,更多干货第一时间到达!

前  言

数据技术嘉年华(Data Technology Carnival) DTC 由墨天轮数据社区及中国数据库联盟(ACDU)主办,2024 年 4 月 12-13 日在北京新云南皇冠假日酒店举行。本次嘉年华以“智能·云原生·一体化——DB 与 AI 协同创新,模型与架构融合发展”为主题,汇聚 80 余位行业杰出技术领袖、学术精英、行业实践者、生态布道者,带来了 1+12 场精彩绝伦的主题演讲。

cce36c9a3363065daf721d53a4ce1c50.png

作为数据库行业内的大会,我只参加过 DTC 和 DTCC,DTC 参加了五年,DTCC 参加过一年;DTCC 中国数据库技术大会(Database Technology Conference China) 是由 IT168 联合旗下 ITPUB、ChinaUnix 两大技术社区联合主办,今年应该是第 15 届(DTCC2024)大概会在 8 月 22 日到 24 日在朗丽兹西山花园酒店隆重召开,当然以往的 DTCC 规模会更大一些,为期三天,,一般为周四周五周六举行 。

c160368658e562071039c634d07bfc80.png

正  文

上周五、周六是去参加 DTC2024 嘉年华了,各位卷王基本上都在大会开完一半天内写完总结了,甚至像韩老师和白鳝老师都已经写过两篇了,我这才打算动笔,一来是看看各位大佬都写些什么,二来是有些话太过于负面不好下笔,直到今日看到白鳝老师的《DTC 到了变革的时候了》这篇文章,内容比较直白,实在是收获颇丰呀!文中提到

大家都有些同感,疫情之后的 DTC 似乎变了点味道。有朋友说 Oracle 时代的 DTC 大家都在分享运维的技巧,干货很多,现在的 DTC 大家藏着掖着,听不到特别有价值的内容。甚至有朋友说参加了两天的 DTC,听了几小时的广告,收获不大。

是的,如果你是抱着学习干货的态度,那么确实两天的内容能有干货的不足五场,而且这五场干货你不一定都能听懂,吸收。例如吕海波老师本次分享的是《后摩尔定律时代的数据库研发》的相关思路,以及示例分享,听过以后,我去,牛逼啊,我这几乎就是懵逼的状态,吕大通过添加两个 __nop8() 空指针就可以寻找到代码的龙脉,执行时间从原来的 11ms 降低到 6ms,怎么样?效率提升了差不多一倍,要是所有的代码都按照这个思路来写,那么整个执行时间将提升一倍,是不是很震惊呀!当然不是所有的代码都能够优化,提升这么大,但这是一种思路,一种修改内核的思路,一种国产数据库的发展道路。我们的国产数据库并没有“遥遥领先”,还是有一定的差距,还有学习进步的空间。

825c9ae189ed0cc1ad7865b45856623b.png

讲台与展台

吕大讲的是干货吧,绝对是满满的干货,可能有多少人听懂呢?于是乎,各种厂商的广告就铺天盖地的席卷而来,总体听下来就是 80%、90% 都是为自己的产品打广告,甚是枯燥无味,会场人数星星点点,连一半的参会人数都不到。如果能限制各个厂商在讲台上只讲技术干货,最佳实践,经典故障处理,性能优化,那就是另外一种天地了,我敢肯定,满座率能达到 80% 以上,然后展台上如白鳝老师所说,让厂商们各显神通,通过各种互动活动吸引人群前来观看,而不是站着一两个看起来无精打采的销售,面无表情的看着来来往往的行人,给人一种“你想扫码就扫不想扫就走”的感觉,必须扩大展台规模,提供用户体验区域,提供数据库实验环境让参观者体验。

6668ec029c58bf6d57f7843c7a45e98e.jpeg

不知道是因为周四周五周六同时还在进行 QCon 全球软件开发大会(QCon 全球软件开发大会是由极客邦科技旗下 InfoQ 中国主办的综合性技术盛会,每年在伦敦、北京、纽约、圣保罗、上海、旧金山召开)的召开的原因,今年参加嘉年华的人感觉比去年的人要少一些,而且第二日比第一日的人也要少一些。根据同事说 QCon 大会今年参会人数也比去年要少一些,难道是大家都参会疲劳了吗?各大厂商也都在卷自己的大会,比如 TiDB 定期举办的沙龙,PostgreSQL 的大会,还有 OceanBase 每年的开发者大会等等,可能分流掉了一些人员,所以参会人员才有所减少吧。

771ac1f6d59c46ac6157d3b5f323086c.png

当然在这“1+12”场的主题演讲中,我去听的就主会场外加几位朋友的演讲,其他的主题演讲只是大概看了一下,很多场次都在讲 AI、大模型、向量这些近期比较火的东西,朋友尹总监的演讲主题为《解锁 Oracle 数据库的 AI 潜力》,通过向量和 AI 的结合介绍了 Oracle 23c 中即将推出的 “Oracle AI Vector Search” 功能。然后就是薛老师的《通用数据库的 SQL 优化》,虽然是二楼最后一场,但结束的早,参会人数也比较多,也有人提问题(提问题的人会获得相应的奖品,比如数据库技术书籍或笔记本),SQL 优化的本质就是减少 IO,减少交互、减少不必要的操作,低效 SQL 是数据库永远的痛。文中有句说的很好:

由于有技术壁垒和视角不同所以才会有甩锅和争论,除了 DBA,几乎其他角色都会觉得数据库宕机是数据库的问题,除了 DBA,几乎其他角色对数据库未必友好。像不像自己的孩子?

还看了德哥《阿里云 PolarDB 开源思考与实践》、戴明明戴总《大模型对数据库运维的赋能》以及杨长老的《Oracle 写冲突解决方案——更新重启动》等干货内容我这里就不介绍了,感兴趣的可以去墨天轮下载相关 PPT 复习一下 https://www.modb.pro/topic/659320。

70c0d90a1c9bb63db3922a62b5078d1e.png

嘉年华晚宴

DTC 嘉年华当日晚上六点半,也有 VIP 参会人员及嘉宾晚宴,由盖总发言致词,晚宴很丰富,有酒有肉,还有鱼,只不过我们这桌德哥、吕大、戴总,首席、总监、彭长老、少安、双奇等等都没有喝酒,全部都是可乐雪碧,大佬们来敬酒也都是如此。当然我以为的闭门晚宴会有一些不一样的风格,但是很遗憾,晚宴上真没有什么关于国产数据库的劲爆“新闻”,就是简简单单的吃了个饭,也许晚宴环节是第一次举办,往届都没有,所以才这么差强人意吧,那就让我们期待下一年的精彩表演吧。

28da785d8b71ba03813a5376f7b44e1e.png
6fb2e5556022eb0663ef25ed024f6a42.png

收货与收获

说起收货,那就真的是收货,在二楼三楼的展厅,各个国产数据库厂商及周边数据工具厂商设有很小的展台,扫码加群、填写问卷等各种活动,就可以获得各个厂商定制的礼物,还有来自签到台的礼物贴纸、冰箱贴,游戏机、抓娃娃机等。还有厂商们的定制 logo 雨伞、书包、笔记本、飞盘、短袖、书籍、数据线、小风扇等等。下图是我收集到的一部分礼物集合。

e18f7fcebf34ea57ff06d30756082b68.png

接下来就是面基部分啦

我的朋友圈、视频号都已经发过了,也认识了几个新朋友,更有以前的老朋友还有“网友”面基,比如双奇、少安、三石、张震等等,还见到了侯老师、彭长老、多明戈,可惜都是合照,本次没有一个单独的照片,有点小遗憾,下次一定补上。

8cffb3df6e3cd0e05c963ce204432cfe.jpeg

然后本周六 4 月 20 日 OceanBase 在上海的开发者大会,我会去参加,也会遇到一些新老朋友及网友,更欢迎其他网友来面基呀。

c8208f8dd0f3ae1fcd07b34589766324.png

当然,DTC2024 这只是我的冰山一角,一面之词,敬请批评指正,很多大佬前两三天都已经写过很多感受了,墨天轮和公众号都有,感兴趣的可以看看,这里放一个参考链接,供大家阅读参考:

参考链接

十三载求索续风华,数智化扬帆启新航 | 万字长文回顾 DTC 2024 https://www.modb.pro/db/1779773627754450944
【2024数据技术嘉年华(DTC2024)】参会感悟(合集)https://www.modb.pro/topic/659321
DTC2024 数据技术嘉年华(演讲资料下载)https://www.modb.pro/topic/659320
2024 数据技术嘉年华大会的总结报告

从如何搞定丈母娘谈起...(DTC番外篇)
DTC  到了变革的时候了
2024 DTC 大会归来有感…
2024年DTC的回顾与思考

INDEX ON DTC_2024(观感)

https://www.modb.pro/db/1779773627754450944
https://www.modb.pro/db/1780056493504663552
https://www.modb.pro/doc/128324

全文完,希望可以帮到正在阅读的你,如果觉得有帮助,可以分享给你身边的朋友,同事,你关心谁就分享给谁,一起学习共同进步~~~

欢迎关注我的公众号【JiekeXu DBA之路】,第一时间一起学习新知识!————————————————————————————
公众号:JiekeXu DBA之路
CSDN :https://blog.csdn.net/JiekeXu
墨天轮:https://www.modb.pro/u/4347

ITPUB:https://blog.itpub.net/69968215

腾讯云:https://cloud.tencent.com/developer/user/5645107
————————————————————————————

436fdab4659d562eb22be17126319ead.gif

分享几个数据库备份脚本

一文搞懂 Oracle 统计信息
 
 

我的 Oracle ACE 心路历程

Oracle 主流版本不同架构下的静默安装指南
 
 

关机重启导致 ASM 磁盘丢失数据库无法启动

Oracle SQL 性能分析(SPA)原理与实战演练
 
 

Oracle 11g 升级到 19c 需要关注的几个问题

Windows 10 环境下 MySQL 8.0.33 安装指南

SQL 大全(四)|数据库迁移升级时常用 SQL 语句

OGG|使用 OGG19c 迁移 Oracle11g 到 19C(第二版)

Oracle 大数据量导出工具——sqluldr2 的安装与使用

从国产数据库调研报告中你都能了解哪些信息及我的总结建议

使用数据泵利用 rowid 分片导出导入 lob 大表及最佳实践

在归档模式下直接 rm dbf 数据文件并重启数据库还有救吗?
### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值