zookeeper应用场景

本文详细介绍了ZooKeeper如何解决分布式系统中常见的问题,如配置管理、分布式锁、Master选举、负载均衡、分布式命名服务、分布式通知/协调和分布式队列。通过ZooKeeper的特性,如Watcher注册与异步通知机制、临时节点和顺序节点,系统能够实现实时的数据变更处理和资源的自动感应。
摘要由CSDN通过智能技术生成

1、数据发布与订阅(配置中心)

        程序总是需要配置的,如果程序分散部署在多态机器上,要逐个改变配置就变得困难,现在把这些配置都放到zookeeper上去,保存在zookeeper的某个目录节点中,然后所有相关应用程序对这个目录点进行监听,一旦配置信息发生变化,每个应用程序就会收到zookeeper的通知,然后从zookeeper获取新的配置信息应用到系统中就好。

1、分布式环境下,配置文件管理和同步是一个常见问题。
  a)一个集群中,所有节点的配置信息是一致的,比如 Hadoop 集群。
  b)对配置文件修改后,希望能够快速同步到各个节点上。
  
2、配置管理可交由ZooKeeper实现。
  a)可将配置信息写入ZooKeeper上的一个Znode。
  b)各个节点监听这个Znode。
  c)一旦Znode中的数据被修改,ZooKeeper将通知各个节点。

2、 分布式锁

  参考博客

3、master选举

        考虑7*24小时向外提供服务的系统,不能有单点故障,于是我们使用集群,采用的是Master+Slave。集群中有一台主机和多台备机,由主机向外提供服务,备机监听主机状态,一旦主机宕机,备机必需迅速接管主机继续向外提供服务。在这个过程中,从备机选出一台机作为主机的过程,就是Master选举。

        以前的集群机器监控:这通常用于那种对集群中机器状态,机器在线率有较高要求的场景,能够快速对集群中机器变化作出响应。这样的场景中,往往有一个监控系统,实时检测集群机器是否存活。过去的做法通常是:监控系统通过某种手段(比如ping)定时检测每个机器,或者每个机器自己定时向监控系统汇报“我还活着”。 这种做法可行,但是存在两个比较明显的问题:

  1. 集群中机器有变动的时候,牵连修改的东西比较多。
  2. 有一定的延时。

利用ZooKeeper有两个特性,就可以实时另一种集群机器存活性监控系统:

  1. 客户端在节点 x 上注册一个Watcher,那么如果 x?的子节点变化了,会通知该客户端。
  2. 创建EPHEMERAL类型的节点,一旦客户端和服务器的会话结束或过期,那么该节点就会消失。

        左边是ZooKeeper集群,右边是3台工作服务器。工作服务器启动时,会去ZooKeeper的Servers节点下创建临时节点,并把基本信息写入临时节点。这个过程叫服务注册,系统中的其他服务可以通过获取Servers节点的子节点列表,来了解当前系统哪些服务器可用,这该过程叫做服务发现。接着这些服务器会尝试创建Master临时节点,谁创建成功谁就是Master,其他的两台就作为Slave。所有的Work Server必需关注Master节点的删除事件。通过监听Master节点的删除事件,来了解Master服务器是否宕机(创建临时节点的服务器一旦宕机,它所创建的临时节点即会自动删除)。一旦Master服务器宕机,必需开始新一轮的Master选举,比如:每次选取序列号最小的那个机器作为Master,如果这个机器挂了,由于他创建的节点会马上消失,那么之后最小的那个机器就是Master了。

4、负载均衡

       这里说的负载均衡是指软负载均衡。在分布式环境中,为了保证高可用性,通常同一个应用或同一个服务的提供方都会部署多份,达到对等服务。而消费者就须要在这些对等的服务器中选择一个来执行相关的业务逻辑,其中比较典型的是消息中间件中的生产者,消费者负载均衡。

        图中左侧为ZooKeeper集群,右侧上方为工作服务器,下面为客户端。每台工作服务器在启动时都会去zookeeper的servers节点下注册临时节点,每台客户端在启动时都会去servers节点下取得所有可用的工作服务器列表,并通过一定的负载均衡算法计算得出一台工作服务器,并与之建立网络连接。网络连接我们采用开源框架netty。

5、分布式命名服务

        命名服务也是分布式系统中比较常见的一类场景。在分布式系统中,通过使用命名服务,客户端应用能够根据指定名字来获取资源或服务的地址,提供者等信息。被命名的实体通常可以是集群中的机器,提供的服务地址,远程对象等等——这些我们都可以统称他们为名字(Name)。其中较为常见的就是一些分布式服务框架中的服务地址列表。通过调用ZK提供的创建节点的API,能够很容易创建一个全局唯一的path,这个path就可以作为一个名称。

         另一个,是利用zookeeper顺序节点的特性,制作分布式的ID生成器,写过数据库应用的朋友都知道,我们在往数据库表中插入记录时,通常需要为该记录创建唯一的ID,在单机环境中我们可以利用数据库的主键自增功能。但在分布式环境则无法使用,有一种方式可以使用UUID,但是它的缺陷是没有规律,很难理解。利用zookeeper顺序节点的特性,我们可以生成有顺序的,容易理解的,同时支持分布式环境的序列号。

        阿里巴巴集团开源的分布式服务框架Dubbo中使用ZooKeeper来作为其命名服务,维护全局的服务地址列表,点击这里查看Dubbo开源项目。在Dubbo实现中:

  • 服务提供者在启动的时候,向ZK上的指定节点/dubbo/${serviceName}/providers目录下写入自己的URL地址,这个操作就完成了服务的发布。
  • 服务消费者启动的时候,订阅/dubbo/${serviceName}/providers目录下的提供者URL地址, 并向/dubbo/${serviceName} /consumers目录下写入自己的URL地址。

注意,所有向ZK上注册的地址都是临时节点,这样就能够保证服务提供者和消费者能够自动感应资源的变化。另外,Dubbo还有针对服务粒度的监控,方法是订阅/dubbo/${serviceName}目录下所有提供者和消费者的信息。

6、分布式通知/协调

        ZooKeeper中特有watcher注册与异步通知机制,能够很好的实现分布式环境下不同系统之间的通知与协调,实现对数据变更的实时处理。使用方法通常是不同系统都对ZK上同一个znode进行注册,监听znode的变化(包括znode本身内容及子节点的),其中一个系统update了znode,那么另一个系统能够收到通知,并作出相应处理

  • 另一种心跳检测机制:检测系统和被检测系统之间并不直接关联起来,而是通过zk上某个节点关联,大大减少系统耦合。
  • 另一种系统调度模式:某系统有控制台和推送系统两部分组成,控制台的职责是控制推送系统进行相应的推送工作。管理人员在控制台作的一些操作,实际上是修改了ZK上某些节点的状态,而ZK就把这些变化通知给他们注册Watcher的客户端,即推送系统,于是,作出相应的推送任务。
  • 另一种工作汇报模式:一些类似于任务分发系统,子任务启动后,到zk来注册一个临时节点,并且定时将自己的进度进行汇报(将进度写回这个临时节点),这样任务管理者就能够实时知道任务进度。

总之,使用zookeeper来进行分布式通知和协调能够大大降低系统之间的耦合

7、分布式队列

        队列方面,简单地讲有两种,一种是常规的先进先出队列,另一种是要等到队列成员聚齐之后的才统一按序执行。对于第一种先进先出队列,和分布式锁服务中的控制时序场景基本原理一致,这里不再赘述。

       第二种队列其实是在FIFO队列的基础上作了一个增强。通常可以在 /queue 这个znode下预先建立一个/queue/num 节点,并且赋值为n(或者直接给/queue赋值n),表示队列大小,之后每次有队列成员加入后,就判断下是否已经到达队列大小,决定是否可以开始执行了。这种用法的典型场景是,分布式环境中,一个大任务Task A,需要在很多子任务完成(或条件就绪)情况下才能进行。这个时候,凡是其中一个子任务完成(就绪),那么就去 /taskList 下建立自己的临时时序节点(CreateMode.EPHEMERAL_SEQUENTIAL),当 /taskList 发现自己下面的子节点满足指定个数,就可以进行下一步按序进行处理了。

参考文章:https://segmentfault.com/a/1190000012185362

https://www.cnblogs.com/tommyli/p/3766189.html

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值