Jina AI 携搜索小模型亮相 ICLR 2025 新加坡

四月,机器学习领域的目光将汇聚新加坡,顶级会议 ICLR 2025 定于 4 月 24 日至 28 日在新加坡博览中心举行。

当大家都在追逐大模型时,Jina AI 将带来不一样的声音:我们聚焦于更小巧、更高效的多模态搜索模型。

这次,我们的研发团队将带着 3 篇重磅论文空降狮城,分享 Jina AI 在这一方面的最新突破。团队成员 Sedigheh Eslami、Andreas Koukounas、王峰以及 CEO 肖涵将在现场,与全球 AI 研究者同台交流。

三篇硬核论文,三个研究亮点

论文一:对齐 CLIP 中的图像和语言模态

标题:Mitigate the Gap: Improving Cross-Modal Alignment in CLIP(弥合鸿沟:改进 CLIP 中的跨模态对齐)

时间:4 月 26 日 10:00-12:30

形式:Poster 报告

论文链接:https://arxiv.org/abs/2406.17639

CLIP 模型在图文理解任务上表现亮眼,但其内部存在一个常被忽视的“模态鸿沟”:图像和文本的向量各自占据不同的领地。这项研究直面这一核心挑战,揭示了模态鸿沟正是限制 CLIP 性能的关键瓶颈之一。

我们发现,简单的向量平移并不能解决问题,反而会破坏向量空间的结构。为此,我们提出了一种创新方法:通过共享编码器参数,并结合一种分离式的目标函数进行语义正则化,双管齐下。

实验结果证明,该方法成功地拉近了不同模态表征间的距离,有效缓解了模态割裂问题,并显著提升了模型在多个下游任务中的表现。这表明,参数共享与语义分离的结合,是打通跨模态理解壁垒的有效途径。

关键洞见:

  • 模态鸿沟竟是 CLIP 模型性能瓶颈的关键所在

  • 简单平移向量只会破坏向量空间的相对关系结构

  • 参数共享+语义分离双管齐下,才是解决模态割裂的有效途径

论文二:还是 CLIP,多模态多语言多功能

标题:jina-clip-v2: Multilingual Multimodal Embeddings for Text and Images(jina-clip-v2:统一文本和图像的多语言多模态向量模型)

时间:4 月 28 日 10:40-11:50

形式:口头报告

论文链接:https://arxiv.org/abs/2412.08802

这是一项"一箭双雕"的研究,我们团队研发的 jina-clip-v2 模型不仅精于跨模态检索,在纯文本检索任务上的表现也足以媲美专业文本模型。

其核心在于多任务、多阶段的对比学习框架,并通过融合 Matryoshka 表示学习(MRL)技术,生成的向量可以按需截断。用户可以根据实际应用场景(例如,快速预览 vs. 精确匹配)选择不同长度的向量,在高性能与低存储成本间灵活权衡。此外,模型还具备出色的多语言处理能力。

关键洞见:

  • 一个模型统一处理文本和跨模态检索,极大简化部署复杂性。

  • 创新的图像分辨率动态调整策略,大幅提升对复杂视觉文档的理解力。

  • Matryoshka 技术让向量长度可变,用户可按需截断,灵活选择效率与精度的平衡点。

论文三:Jina Reader 幕后的小模型大英雄

标题:ReaderLM-V2: Small Language Model for HTML to Markdown and JSON(ReaderLM-V2:HTML 转 Markdown 和 JSON 的小语言模型)

时间:4 月 28 日 15:00-16:00

形式:Poster 报告

论文链接:https://arxiv.org/abs/2503.01151

ReaderLM-V2 以其仅 15 亿参数的紧凑体量,在网页内容提取方面表现惊人。它能精准解析复杂 HTML,并将其转换为干净的 Markdown 或 JSON 格式,即使长达 512K tokens 也游刃有余。

在这个高度垂直的任务上,ReaderLM-V2 的表现甚至超越了像 GPT-4o 这样的业界领先大模型,同时效果提升显著。

该模型的成功得益于两大关键创新:一是 Jina AI 团队独创的三阶段数据合成策略,通过“起草-精炼-评判”循环生成高质量、多样化的训练样本;二是统一的训练框架,支持自对弈式迭代学习,使模型能够不断从自身错误中学习和改进,不断突破性能极限。

关键洞见:

  • 专注特定任务的小模型,其性能和效率能够完胜通用大模型。

  • "起草-精炼-评判"的迭代数据合成方法成为提升数据质量的制胜法宝

  • 自对弈式迭代训练让模型不断自我进化,性能持续攀升

遇见 Jina AI,遇见最好的搜索

以上三项研究代表了 Jina AI 在构建搜索基座模型上的最新进展,我们致力于推动搜索技术的边界。

如果您也将参加 ICLR 2025,欢迎在会场找到我们的团队成员,与我们一起深入探讨对 AI 搜索的研究洞见。

除了技术的交流,我们也非常乐意介绍 Jina AI 的工作与实习机会,并为您准备了精美的纪念品。期待在新加坡与您相见!

### 如何结合 RedisMySQL 实现混合或多模式的数据存储架构 #### 架构概述 Redis 是一种高性能的内存级键值存储系统,适用于快速读写的场景,而 MySQL 则是一种支持 ACID 特性的关系型数据库,适合用于持久化存储和复杂的事务处理。两者可以结合起来形成一个多模式数据存储架构,利用各自的优势来满足不同的业务需求。 这种架构的核心在于将 Redis 作为缓存层,用来加速频繁访问的数据请求,同时将 MySQL 作为后台的持久化存储,确保数据的安全性和可靠性[^1]。 --- #### 技术实现细节 ##### 数据分层设计 - **热数据存储于 Redis** 将高频访问的小量数据(如用户会话、计数器、排行榜等)存储到 Redis 中,这些数据通常具有较高的时间敏感度和较低的持久化要求[^3]。 - **冷数据存储于 MySQL** 对于需要长期保存或者涉及复杂查询的关系型数据,则将其存储在 MySQL 中。这类数据可能包括订单记录、交易历史或其他结构化的业务信息。 ##### 同步机制 为了保持 RedisMySQL 的数据一致性,可以通过以下方式实现: - **异步复制** 使用 Gearman 或其他消息队列工具完成从 MySQLRedis 的增量同步过程。当 MySQL 中的数据发生变化时,触发相应的事件通知 Redis 更新其对应的缓存条目。 - **定期刷新策略** 配置定时任务周期性地扫描 MySQL 表中的最新改动,并据此调整 Redis 缓存的内容。这种方法虽然简单易行,但在高并发环境下可能会引入额外开销[^4]。 - **双写控制逻辑** 应用程序层面负责协调两次写入操作——即先修改 MySQL 主库后再更新关联的 Redis 键值对。尽管如此,仍需注意可能出现的时间窗口竞争条件以及网络分区带来的潜在风险。 --- #### 故障恢复与高可用保障措施 考虑到分布式系统的固有特性及其运行过程中不可避免的各种异常状况,必须提前规划好应对策略以降低服务中断概率并缩短修复时间窗期长度: - **主备切换方案** 基于 Keepalived 工具配合 VRRP 协议构建虚拟 IP 地址漂移功能, 当检测到当前活动节点失效后能够迅速迁移至备用实例继续提供正常的服务响应[^2]. - **冗余副本维护** 不仅限于单一组件内部实施主从复制拓扑结构(比如 Redis Sentinel / Cluster 模式), 还应该跨不同类型的数据库间建立多层次保护屏障, 确保即使某一部分发生不可逆损坏也能依靠剩余部分重建完整的业务视图. --- ```python import redis from mysql.connector import connect def fetch_data_from_cache(key): r = redis.Redis(host='localhost', port=6379, decode_responses=True) value = r.get(key) if not value: conn = connect(user='root', password='', host='127.0.0.1', database='test') cursor = conn.cursor() query = f"SELECT * FROM users WHERE id={key}" cursor.execute(query) result = cursor.fetchone() if result: r.set(str(result[0]), str(result)) return str(result) return value or 'Not Found' ``` 上述代码片段展示了如何优先尝试从 Redis 获取指定用户的详细资料; 如果未命中则回退至 MySQL 查询原始记录并将结果重新加载进缓存以便下次更快返回相同请求的结果集. --- #### 性能优化建议 最后值得一提的是,在实际部署之前还应充分考虑以下几个方面的因素来进行必要的参数微调工作: - 调整最大连接数限制(`max_connections`)以适应预期负载水平. - 开启管道传输(pipelining)减少往返延迟影响效率表现. - 设置合理的过期策略(TTL),防止无意义占用宝贵资源空间浪费现象的发生. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值