Python数据分析与展示 | 课程综合测试(客观题)

1单选(1分)
一般说,numpy-matplotlib-pandas是数据分析和展示的一条学习路径,哪个是对这三个库不正确的说明?
A.pandas仅支持一维和二维数据分析,多维数据分析要用numpy
B.matplotlib支持多种数据展示,使用pyplot子库即可
C.numpy底层采用C实现,因此,运行速度很快
D.pandas也包含一些数据展示函数,可不用matplotlib

正确答案:A

2单选(1分)
在使用numpy绘制图像手绘效果的实例中,关于使用像素间梯度值,如下哪个说法是正确的?
A.梯度值是颜色值的灰度表示
B.梯度值是颜色值的一维表示,颜色越相近梯度值越大
C.梯度值用于表示颜色值在RGB维度上数据的相关关系
D.梯度值用于表示颜色间差距,相似颜色趋近于白色

正确答案:D

3单选(1分)
下面两段代码,哪个说法不正确?

import numpy as np
a = np.array([0, 1, 2, 3, 4])
import pandas as pd
b = pd.Series([0, 1, 2, 3, 4])

A.a和b是不同的数据类型,之间不能直接运算
B.a和b表达同样的数据内容
C.a和b都是一维数据
D.a参与运算的执行速度明显比b快

正确答案:D

4单选(1分)
哪个选项更能代表如下代码的运行结果?

import numpy as np
x = np.array([ [ 0, 1, 2, 3, 4], [9, 8, 7, 6] ])
x.dtype()

A.float32类型
B.int32类型
C.uint32类型
D.object类型

正确答案:D

5单选(1分)
Python基本语法仅支持整数、浮点数和复数类型,numpy和pandas库则支持int64/int32/int16/int8等20余种数字类型,如下说法哪个不正确?
A.科学计算可能涉及很多数据,对存储和性能有较高要求,因此支持更多种数字类型。
B.numpy底层是C语言实现,因此,天然支持了多种数据类型。
C.程序员必须精确指定数据类型,因此,会给编程带来一定负担
D.对元素类型精确定义,有助于numpy和pandas库更合理优化存储空间。

正确答案:C

6单选(1分)
如下哪个代码不能生成一个ndarray对象?
A.a = np.array([0, 1, 2, 3, 4])
B.a = np.array({0:0,1:1,2:2,3:3,4:4})
C.a = np.array((0, 1, 2, 3, 4)
D.a = np.array(0, 1, 2, 3, 4)

正确答案:D

7单选(1分)
如下哪个语句能够生成一个n*n的正方形矩阵,对角线值为1,其余位置值为0。
A.np.zeros((n,n))
B.np.eye(n)
C.np.full((n,n),1)
D.np.ones((n,n))

正确答案:B

8单选(1分)
哪个是下面代码的运行结果?

import numpy as np
a = np.arange(12).reshape((3,4))
print(a.mean())

A.[4, 5, 6, 7]
B.16.5
C.5.5
D.[1.5, 5.5, 9.5]

正确答案:C

9单选(1分)
如下代码中plt的含义是什么?

import matplotlib.pyplot as plt

A.别名
B.类名
C.函数名
D.变量名

正确答案:A

10单选(1分)
阅读下面代码:

import matplotlib.pyplot as plt
plt.plot([9, 7, 15, 2, 9])
plt.savefig('test', dpi=600)

其中,savefig()函数的作用是什么?
A.将数据图存储成文件
B.记录并存储数据
C.刷新数据
D.显示所绘制的数据图

正确答案:A

11单选(1分)
阅读下面代码:

import matplotlib.pyplot as plt
plt.plot([9, 7, 15, 2, 9])
plt.show()

其中,show()函数的作用是什么?
A.显示所绘制的数据图
B.存储所绘制的数据图
C.缓存所绘制的数据图
D.刷新所绘制的数据图

正确答案:A

12单选(1分)
阅读如下代码:

import pandas as pd
s = pd.Series(10, index=['a', 'b', 'c']

关于变量s,哪个说法是不正确的?
A.如果index部分省略,默认生成的索引是0, 1, 2
B.s是一个一维数组
C.s中元素的索引分别是’a’, ‘b’, ‘c’
D.s中每个元素的值是10

正确答案:A

13单选(1分)
阅读如下代码:

import pandas as pd
a = pd.Series([9, 8, 7, 6], index=['a', 'b', 'c', 'd'])

哪个是print(a.index)的结果?
A.[9, 8, 7, 6]
B.[‘a’, ‘b’, ‘c’, ‘d’]
C.(‘a’, ‘b’, ‘c’, ‘d’)
D.Index([‘a’, ‘b’, ‘c’, ‘d’])

正确答案:D

14单选(1分)
阅读如下代码:

import pandas as pd
dt = {'one': [9, 8, 7, 6], 'two': [3, 2, 1, 0]}
a = pd.DataFrame(dt)

哪个是print(a.values)的结果?
A.[[9 8 7 6] [3 2 1 0]]
B.[3, 2, 1, 0]
C.[[9 3]
[8 2]
[7 1]
[6 0]]
D.[9, 8, 7, 6]

正确答案:C

15单选(1分)
阅读如下代码:

import pandas as pd
dt = {'one': [9, 8, 7, 6], 'two': [3, 2, 1, 0]}
a = pd.DataFrame(dt)

希望获得[‘one’, ‘two’],使用如下哪个语句?
A.a.index
B.a.row
C.a.values
D.a.columns

正确答案:D

16单选(1分)
阅读如下代码:

import pandas as pd
dt = {'one': [9, 8, 7, 6], 'two': [3, 2, 1, 0]}
a = pd.DataFrame(dt)

希望获得[3, 2, 1, 0],使用如下哪个语句?
A.a.ix[1]
B.a.index[1]
C.a.colums[1]
D.a[1]

正确答案:D

17单选(1分)
阅读如下代码:

import pandas as pd
dt = {'one': [9, 8, 7, 6], 'two': [3, 2, 1, 0]}
a = pd.DataFrame(dt)

请问,哪个关于a.reindex()的说法是正确的?
A.a中部分列的值可能被修改
B.a中部分行的值可能修改
C.a中部分索引可能被修改
D.a的值不改变

正确答案:D

18单选(1分)
pandas库中Series对象的索引表示类似:Index([5, 4, 3, 2, 1], dtype=’int’),如下哪个说法是不正确的?
A.Index()表示这是一个Index类型
B.’int’说明各元素是整数类型
C.dtype表示Index类型中各元素的数据类型
D.5, 4, 3, 2, 1是Index的五个元素,这是一个五维数据

正确答案:D

19单选(1分)
下面关于Series和DataFrame的理解,哪个是不正确的?
A.DataFrame表示带索引的二维数据
B.Series和DataFrame之间不能进行运算
C.Series表示带索引的一维数据
D.可以像对待单一数据一样对待Series和DataFrame对象

正确答案:B

20单选(1分)
Series和DataFrame类型中的.cumsum()方法,下面哪个说法是正确的?
A.计算全部元素的个数
B.计算全部元素的和
C.依次计算第n-1和第n个元素的和
D.依次计算前1、2、…、n个元素的和

正确答案:D

21填空(2分)
请补全如下代码,修改数组a的维度。

import numpy as np
a = np.ones((2, 3, 4), dtype=np.int32)
a.______((3, 8))

正确答案:resize

22填空(2分)
请补全如下代码,交换数组a的两个维度,生成新的数组b。

import numpy as np
a = np.arange(12).reshape((3,4))
b = a.______(0, 1)

正确答案:swapaxes

3填空(2分)
请补全如下代码,修改数组a的类型为整数。

import numpy as np
a = np.arange(12, dtype=np.float).reshape((3,4))
a = a.________(np.int)

正确答案:astype

24填空(2分)
请补全如下代码,随机生成一个(3, 4)维的随机数组,每个值随机产生。

import numpy as np
a = np.random.______(100, 200, (3, 4))

正确答案:randint
25填空(2分)
请阅读如下代码:

import numpy as np
a = np.array([10, 8, 15, 6, 1])
np.gradient(a)

上述代码的运行结果是:
[-2. _ -1. -7. -5.]

正确答案:2.5

26填空(2分)
补全如下代码,调整变量a中第2行和第3行,使这两行交换:

import pandas as pd
dt = {'one': [9, 8, 7, 6], 'two': [3, 2, 1, 0]}
a = pd.DataFrame(dt)
a = a.reindex( _______ = (2, 3))

正确答案:index

27填空(2分)
补全如下代码,对生成的变量a在0轴上进行升序排列。

import pandas as pd
import numpy as np
a = pd.DataFrame(np.arange(20).reshape(4,5), index = ['z', 'w', 'y', 'x'])
a.____________()

正确答案:sort_index

28填空(2分)
补全如下代码,对生成的变量a在1轴上进行降序排列。

import pandas as pd
import numpy as np
a = pd.DataFrame(np.arange(20).reshape(4,5), index = ['z', 'w', 'y', 'x'])
a.____________(axis=1, ascending=False)

正确答案:sort_index

29填空(2分)
补全如下代码,对生成的变量a在第2列上进行数值升序排列。

import pandas as pd
import numpy as np
a = pd.DataFrame(np.arange(20).reshape(4,5), index = ['z', 'w', 'y', 'x'])
a.____________(2)

正确答案:sort_values

30填空(2分)
补全如下代码,打印其中非NaN变量的数量。

import pandas as pd
import numpy as np
a = pd.DataFrame(np.arange(20).reshape(4,5))
b = pd.DataFrame(np.arange(16).reshape(4,4))
print((a+b).______())

正确答案:count

已标记关键词 清除标记
<p style="font-size:16px;"> <span style="font-size:18px;"><span style="background-color:#FFFFFF;">Python 数据分析+pyecharts 可视化 + Flask Web端服务 + 2大真实项目 手把手实战教程.</span></span> </p> <p style="font-size:16px;"> Python数据分析课程Python为核心工具,结合其工具包pyecharts+开发IDEA pycharm + web 框架Flask。课程以案例为中心,结合案例讲解让同学们更清晰的掌握每一个知识点的应用与工作流程。 </p> <p style="font-size:16px;"> <strong>2大项目案例: 重点讲解 开发架构 + 部署上线流程,手把手实战教学。 </strong> </p> <p style="font-size:16px;"> 1. 开发架构 </p> <p style="font-size:16px;"> (1)基于PyCharm + Flask + Echarts + Python+Pandas 组合进行数据分析全栈开发 </p> <p style="font-size:16px;"> (2)PyCharm: 项目开发的IDEA; </p> <p style="font-size:16px;"> (3)Flask:作为WEB框架,主要连接后端服务数据。主要演示: 前后端分离架构 + 模板直接渲染架构; </p> <p style="font-size:16px;"> (4)Echarts: 这里使用pyecharts 作为可视化数据展示; </p> <p style="font-size:16px;"> (5)Python: 作为后端数据生成的语言; </p> <p style="font-size:16px;"> (6)Pandas: 主要作为数据分析库; </p> <p style="font-size:16px;"> 2 部署线上服务案例 </p> <p style="font-size:16px;"> (1)资讯类项目-基于Flask 模板渲染 词云; </p> <p style="font-size:16px;"> (2)人口统计项目-基于Flask 前后端分离 Line 和 Bar 组合 数据统计; </p> <p style="font-size:16px;"> <strong>课程特色</strong> </p> <p style="font-size:16px;"> 课程风格通俗易懂 </p> <p style="font-size:16px;"> 案例内容持续更新 </p> <p style="font-size:16px;"> 简单易懂,接地气的案例 </p> <p style="font-size:16px;"> 有效,提供所有数据和代码 </p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/201908291440447128.png" alt="" /> </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/201908291440543352.png" alt="" /> </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/201908291441085943.png" alt="" /> </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/201908291441198368.png" alt="" /> </p>
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页