【2025年7月】平面几何研讨

G1. 在 △ABC\triangle ABCABC 中, DDD, EEE, FFF 分别是 BCBCBC, ACACAC, ABABAB 三边上的旁切圆切点, ∠BAC\angle BACBAC 的角平分线交 DEDEDE 于点 YYY, ∠BCA\angle BCABCA 的角平分线交 EFEFEF 于点 XXX. 求证: XYXYXY 的中点在边 ACACAC 的垂直平分线上. (2025, 俄罗斯Tuymaada数学奥林匹克)

在这里插入图片描述

证明: 只需证明: AYcos⁡(A/2)=CXcos⁡(C/2)AY \cos(A/2)=CX \cos(C/2)AYcos(A/2)=CXcos(C/2), 即 AY/CX=cos⁡(C/2)/cos⁡(A/2)AY/CX=\cos(C/2)/\cos(A/2)AY/CX=cos(C/2)/cos(A/2).

YYYACACAC 的距离为 ddd, XXXACACAC 的距离为 d′d'd.

AY/CX=(d/d′)⋅(sin⁡(C/2)/sin⁡(A/2))AY/CX=(d/d') \cdot (\sin (C/2)/\sin (A/2))AY/CX=(d/d)(sin(C/2)/sin(A/2)).

所以只需证明 d/d′=tan⁡(A/2)/tan⁡(C/2)d/d'=\tan(A/2)/\tan(C/2)d/d=tan(A/2)/tan(C/2).

DYDYDY : YE=1−λYE=1-\lambdaYE=1λ : λ\lambdaλ.

d(Yd(Yd(Y, AB)=(1−λ)d(DAB)=(1-\lambda)d(DAB)=(1λ)d(D, AB)+(1−λ)d(EAB)+(1-\lambda)d(EAB)+(1λ)d(E, AB)AB)AB).

d(Yd(Yd(Y, AC)=(1−λ)d(EAC)=(1-\lambda)d(EAC)=(1λ)d(E, AC)AC)AC).

d(Dd(Dd(D, AB)=BDsin⁡BAB)=BD \sin BAB)=BDsinB, d(Ed(Ed(E, AB)=AEsin⁡AAB)=AE \sin AAB)=AEsinA, d(Ed(Ed(E, AC)=CDsin⁡CAC)= CD \sin CAC)=CDsinC.

BDBDBD : AEAEAE : CD=1tan⁡(C/2)CD=\frac{1}{\tan (C/2)}CD=tan(C/2)1 : 1tan⁡(C/2)\frac{1}{\tan (C/2)}tan(C/2)1 : 1tan⁡(B/2)\frac{1}{\tan (B/2)}tan(B/2)1.

sin⁡B\sin BsinB :sin⁡A\sin AsinA :sin⁡C=a\sin C=asinC=a : bbb : ccc.

解得: λ=−atan⁡(B/2)btan⁡(B/2)−ctan⁡(C/2)−atan⁡(B/2)\lambda = \frac{-a\tan (B/2)}{b\tan (B/2)-c\tan (C/2)-a\tan (B/2)}λ=btan(B/2)ctan(C/2)atan(B/2)atan(B/2).

进而 d=−asin⁡Cbtan⁡(B/2)−ctan⁡(C/2)−atan⁡(B/2)d=\frac{-a\sin C}{b \tan (B/2)-c\tan (C/2)-a\tan (B/2)}d=btan(B/2)ctan(C/2)atan(B/2)asinC.

类似地 (A(A(A, CCC 互换), 得到:

d′=−csin⁡Abtan⁡(B/2)−atan⁡(A/2)−ctan⁡(B/2)d'=\frac{-c\sin A}{b \tan (B/2)-a\tan (A/2)-c\tan (B/2)}d=btan(B/2)atan(A/2)ctan(B/2)csinA.

dd′=btan⁡(B/2)−atan⁡(A/2)−ctan⁡(B/2)btan⁡(B/2)−ctan⁡(C/2)−atan⁡(B/2)\frac{d}{d'} = \frac{b \tan (B/2)-a\tan (A/2)-c\tan (B/2)}{b \tan (B/2)-c\tan (C/2)-a\tan (B/2)}dd=btan(B/2)ctan(C/2)atan(B/2)btan(B/2)atan(A/2)ctan(B/2).

dd′=tan⁡(A/2)/tan⁡(C/2)\frac{d}{d'}=\tan(A/2)/\tan(C/2)dd=tan(A/2)/tan(C/2) 等价于

(b−a)tan⁡(B/2)tan⁡(A/2)+(c−b)tan⁡(C/2)tan⁡(B/2)+(a−c)tan⁡(A/2)tan⁡(C/2)=0(b-a) \tan(B/2)\tan (A/2) +(c-b)\tan(C/2)\tan(B/2)+(a-c)\tan(A/2)\tan(C/2)=0(ba)tan(B/2)tan(A/2)+(cb)tan(C/2)tan(B/2)+(ac)tan(A/2)tan(C/2)=0.

左右同乘 cos⁡(A/2)cos⁡(B/2)cos⁡(C/2)\cos(A/2)\cos(B/2)\cos(C/2)cos(A/2)cos(B/2)cos(C/2), 再经整理, 得到:

asin⁡A(sin⁡(C/2)cos⁡(B/2)−sin⁡(B/2)cos⁡(C/2))+bsin⁡B(sin⁡(A/2)cos⁡(C/2)−sin⁡(C/2)cos⁡(A/2))+csin⁡C(sin⁡(B/2)cos⁡(A/2)−sin⁡(A/2)cos⁡(B/2))=0a\sin A (\sin (C/2)\cos(B/2)-\sin (B/2)\cos(C/2))+b\sin B (\sin (A/2)\cos(C/2)-\sin (C/2)\cos(A/2))+c\sin C (\sin (B/2)\cos(A/2)-\sin (A/2)\cos(B/2))=0asinA(sin(C/2)cos(B/2)sin(B/2)cos(C/2))+bsinB(sin(A/2)cos(C/2)sin(C/2)cos(A/2))+csinC(sin(B/2)cos(A/2)sin(A/2)cos(B/2))=0.

进一步:

acos⁡C+B2sin⁡C−B2+bcos⁡A+C2sin⁡A−C2+ccos⁡B+A2sin⁡B−A2=0a \cos \frac{C+B}{2}\sin \frac{C-B}{2}+b \cos \frac{A+C}{2}\sin \frac{A-C}{2} + c \cos \frac{B+A}{2}\sin \frac{B-A}{2}=0acos2C+Bsin2CB+bcos2A+Csin2AC+ccos2B+Asin2BA=0.

和差化积, 得到:

a(sin⁡C−sin⁡B)+b(sin⁡A−sin⁡C)+c(sin⁡B−sin⁡A)=0a(\sin C-\sin B)+b(\sin A-\sin C)+c(\sin B-\sin A)=0a(sinCsinB)+b(sinAsinC)+c(sinBsinA)=0.

由正弦定理, a(sin⁡C−sin⁡B)+b(sin⁡A−sin⁡C)+c(sin⁡B−sin⁡A)=a(c−b)+b(a−c)+c(b−a)=0a(\sin C-\sin B)+b(\sin A-\sin C)+c(\sin B-\sin A)=a(c-b)+b(a-c)+c(b-a)=0a(sinCsinB)+b(sinAsinC)+c(sinBsinA)=a(cb)+b(ac)+c(ba)=0.

证毕.

G2. 在 △ABC\triangle ABCABC 中, XXX(ABC)(ABC)(ABC) 的弧 BC⌢\overset{\LARGE{\frown}}{BC}BC 上的一动点, YYY, ZZZ 分别为射线 XCXCXC, XBXBXB 上的两个点, 使得 XA=XY=XZXA=XY=XZXA=XY=XZ. 求证: YZYZYZ 恒过定点. (2025, 俄罗斯Tuymaada数学奥林匹克)

在这里插入图片描述

证明:
在这里插入图片描述

恒过 △ABC\triangle ABCABC 的内心(记为 III).

XXXYZYZYZ 作垂线, 垂足记为 HHH.

HX/XA=HX/XY=cos⁡∠BXC2HX/XA=HX/XY=\cos \frac{\angle BXC}{2}HX/XA=HX/XY=cos2BXC 为定值.

∠AXH=∣∠BXA−∠BXC2∣=∣∠BCA−∠BXC2∣\angle AXH = |\angle BXA-\frac{\angle BXC}{2}| = |\angle BCA-\frac{\angle BXC}{2}|AXH=∣∠BXA2BXC=∣∠BCA2BXC 为定值.

所以 △AHX\triangle AHXAHX 形状固定.

∠HAX\angle HAXHAX 大小固定, 且 HA/XAHA/XAHA/XA 是定值, 所以 HHH 的轨迹是缩放加旋转后的 XXX 的轨迹, 为一条定弧.

下面证明这条弧所在地圆过点 III.

在这里插入图片描述

分别让 XXX 趋于 BBBCCC.

XXX 趋于 BBBYYY, ZZZ, HHH 的极限位置的记法在原基础上加以下标1, XXX 趋于 CCC 时加以下标2.

显然 BZ1BZ_1BZ1CY2CY_2CY2(ABC)(ABC)(ABC) 的切线.

显然 Y1Y_1Y1AAA 关于 BIBIBI 的对称点.

∠IY1B=∠IAB=∠BAC2=∠H1Y1B\angle IY_1B=\angle IAB=\frac{\angle BAC}{2}=\angle H_1Y_1BIY1B=IAB=2BAC=H1Y1B.

所以 Y1Y_1Y1, III, H1H_1H1 三点共线.

类似地, Z2Z_2Z2, III, H2H_2H2 三点共线.

上述定弧所在的圆显然为 (AH1H2)(AH_1H_2)(AH1H2).

易知 ∠H1IH2=π−∠BAC\angle H_1IH_2 =\pi-\angle BACH1IH2=πBAC, 所以上述定弧也经过 III.

∠IHA=∠IH1A=π2\angle IHA=\angle IH_1A=\frac{\pi}{2}IHA=IH1A=2π, 所以 IIIXYXYXY 上.

证毕.

G3. 在梯形 ABCDABCDABCD 中, MMMADADAD 中点, EEE 在线段 BMBMBM 上. 已知 ∠ADB=∠MAE=∠BMC\angle ADB=\angle MAE=\angle BMCADB=MAE=BMC. 求证: △BCE\triangle BCEBCE 是等腰三角形. (2021, 俄罗斯Tuymaada数学奥林匹克)

在这里插入图片描述

证明:

CMCMCMBDBDBD 交于点 FFF.

∠EAM=∠BMC\angle EAM=\angle BMCEAM=BMC, ∠EMA=∠CBM\angle EMA=\angle CBMEMA=CBM, 所以 △EAM∼△CMB\triangle EAM \sim \triangle CMBEAMCMB.

EM=BC⋅(AM/BM)=BC⋅(MD/BM)EM=BC \cdot (AM/BM) = BC \cdot (MD/BM)EM=BC(AM/BM)=BC(MD/BM).

ME/MF=(BC/BM)⋅(MD/MF)ME/MF=(BC/BM) \cdot (MD/MF)ME/MF=(BC/BM)(MD/MF).

其中 MD/MF=BC/CF=MC/BCMD/MF=BC/CF=MC/BCMD/MF=BC/CF=MC/BC.

所以 ME/MF=MC/BMME/MF=MC/BMME/MF=MC/BM

进而 △MEF∼△MCB\triangle MEF \sim \triangle MCBMEFMCB.

显然 BBB, EEE, FFF, CCC 四点共圆.

∠BEC=∠BFC=∠MBC\angle BEC=\angle BFC=\angle MBCBEC=BFC=MBC.

证毕.

G4. 已知△ABC\triangle ABCABC. 点DDDEEE分别位于射线BCBCBCACACAC 上, 因此 BBB 位于 CCCDDD, CCCAAAEEE 之间, BC=BDBC=BDBC=BD, ∠BAD=∠CDE\angle BAD= \angle CDEBAD=CDE. △ABC\triangle ABCABC△ADE\triangle ADEADE 的周长之比为2. 求出这些三角形的面积. (2020, 俄罗斯Tuymaada数学奥林匹克)
在这里插入图片描述

证明:

在这里插入图片描述

显然 ∠ABC=∠ADE\angle ABC=\angle ADEABC=ADE, 结合 △ABC\triangle ABCABC△ADE\triangle ADEADE 的外接圆半径之比是1/2可知 AE=2ACAE=2ACAE=2AC.

结合 BC=BDBC=BDBC=BD 可知 S△ABC/S△ADE=4S_{\triangle ABC} / S_{\triangle ADE}=4SABC/SADE=4.

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值