文章目录
粗略翻译

https://doi.org/10.3390/rs16010003
0. Abstract
近年来,遥感分析在视觉分析应用中,特别是在遥感图像的分割和识别方面受到了极大的关注。然而,现有的研究主要集中在单周期RGB图像分析,从而忽略了遥感图像捕获的复杂性,特别是在高植被地块。本文提供了一个大尺度植被遥感数据集,并引入了VRS- seg任务,用于多模态、多时间的植被分割。VRS数据集包含多种模式和时间变化,其注释使用植被知识图(VKG)进行组织,从而提供详细的目标属性信息。为了解决VRS-Seg任务,我们引入了VRSFormer,这是一个集成了多时间和多模态数据融合、几何轮廓细化和类别级分类推理的关键管道。实验结果证明了该方法的有效性和泛化能力。VRS和VRS- seg任务的可用性为进一步研究遥感影像中多模态、多时间植被分割铺平了道路。
订阅专栏 解锁全文
8928

被折叠的 条评论
为什么被折叠?



