面试官如何判断面试者的机器学习水平?

本文探讨了面试官评估机器学习面试者水平的标准,强调实战应用能力的重要性。通过实例分享了一套面试题,指出理论知识、项目经验、编程技能和数据处理能力是关键考核点,鼓励面试者在学习过程中不断进步。
摘要由CSDN通过智能技术生成

评判标准就一个:你的机器学习水平能不能用在工作上?

毕竟我们招人不是为了看你的水平到底有多牛逼,而是想看你是否能帮我们分摊工作,在工作中创造价值。有些人的机器水平很高,但是完全没办法用在工作上就是白搭。

不多废话了,直接放出我之前用过的一套面试题,你们感受一下:

我也自己整理了一套模拟面试题(内容包含面试问题,错误案例,正解),戳我报名免费领取~

假设一个背景:

假设你在大学/培训期间完成了一个人工智能项目,你在你的简历中是这样描述你的项目的:

基于Python语言开发完成了遥感影像分类系统,检测自然环境、土地利用和植被生态。在该项目中通过对图形进行归一化和标准化完成了预处理,随后基于TensorFlow/Keras实现了卷积、池化和激活等CNN结构。随后通过添加BatchNormalization和Dropout等结构进一步提高精度并防止过拟合。在项目后期使用数据增强进一步优化了性能,最终达到了95%的识别率。

我会先抛出这几个问题:

Q1:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值