P4302 [SCOI2003]字符串折叠(区间dp)

题目传送门

题意: 给你一个长度不超过100的字符串,我们可以将它折叠,折叠规则如下: 如果有一个串多次重复,比如 a b a b a b ababab ababab,就可以改成 3 ( a b ) 3(ab) 3(ab) a a a a a a aaaaaa aaaaaa可以改成 6 ( a ) 6(a) 6(a), a b c c c a b c c c abcccabccc abcccabccc可以改成 2 ( a b c c c ) 2(abccc) 2(abccc)或者 2 ( a b 3 ( c ) ) 2(ab3(c)) 2(ab3(c))。问你对于给定字符串能折叠成的最小长度。

思路: 这题容易想到贪心思路,但是很明显不能贪心,因为你前面折叠了会对后面产生影响。一个长度为100的字符串,我们又可以想到区间dp, f [ l ] [ r ] f[l][r] f[l][r]表示从 l l l r r r范围内可以折叠到的最短长度,最后输出 f [ 1 ] [ n ] f[1][n] f[1][n]就行了。

状态转移: 我们对于 f [ l ] [ r ] f[l][r] f[l][r],可以根据区间dp惯用套路,枚举k,那么 f [ i ] [ j ] f[i][j] f[i][j]就有两种情况:
1、直接由 [ i , k ] [i,k] [i,k] [ k + 1 , j ] [k+1,j] [k+1,j]拼接起来
2、把 [ i , k ] [i,k] [i,k]作为模板串,将 s t r [ i ] [ j ] str[i][j] str[i][j]写成 x x x s t r [ i , k ] str[i,k] str[i,k]的形式,前提是此举可行(在枚举k的时候每次暴力判断此举是否可行)。

这样算下来,最坏的时间复杂度是 O ( n 4 ) O(n^4) O(n4),其实这是个最坏的上界,实际上远远达不到。

代码:

#include<bits/stdc++.h>
#define endl '\n'
#define null NULL
#define ls p<<1
#define rs p<<1|1
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define ll long long
#define int long long
#define pii pair<int,int>
#define ull unsigned long long
#define pdd pair<double,double>
#define lowbit(x) x&-x
#define all(x) (x).begin(),(x).end()
#define sz(x) (int)(x).size()
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
char *fs,*ft,buf[1<<20];
#define gc() (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<20,stdin),fs==ft))?0:*fs++;
inline int read()
{
    int x=0,f=1;
    char ch=gc();
    while(ch<'0'||ch>'9')
    {
        if(ch=='-')
            f=-1;
        ch=gc();
    }
    while(ch>='0'&&ch<='9')
    {
        x=x*10+ch-'0';
        ch=gc();
    }
    return x*f;
}
using namespace std;
const int N=2e4+55;
const int inf=0x3f3f3f3f;
const int mod=1e9+7;
const double eps=1e-6;
const double PI=acos(-1);
char s[N];
int f[222][222],b[222];
bool canfold(int i,int j,int k)
{
    int len=j-i+1,p=k-i+1;
    if(len%p)
        return 0;
    int l=i,r=k+1;
    while(r<=j)
    {
        if(s[l]==s[r])
        {
            l++;r++;
        }
        else return 0;
    }
    return 1;
}
void solve()
{
    cin>>s+1;
    int n=strlen(s+1);
    for(int i=1;i<10;i++) b[i]=1;
    for(int i=10;i<100;i++) b[i]=2;
    b[100]=3;
    for(int i=1;i<=n;i++)
        for(int j=i;j<=n;j++)
            f[i][j]=j-i+1;
    for(int len=2;len<=n;len++)
    {
        for(int i=1;i+len-1<=n;i++)
        {
            int j=i+len-1;
            for(int k=i;k<j;k++)
            {
                f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]);
                if(canfold(i,j,k))
                {
                    int cnt=(len/(k-i+1));
                    f[i][j]=min(f[i][j],b[cnt]+f[i][k]+2);
                }
            }
        }
    }
    cout<<f[1][n]<<endl;
}
signed main()
{
//    int t;
//    cin>>t;
//    while(t--)
        solve();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值