美国科学院学报:如何在竞争激烈的环境下维持稳定的群体

行为决策演化示意图。最上面一行是混合群体,下面两行是网络群体。相比于混合群体,网络促使合作者聚集成团簇,但是惩罚的加入将破坏合作环境。

来源:中国科学院


西安光机所李学龙研究员同合作者在数据驱动的行为决策研究方面取得阶段进展。最新成果以“Punishment diminishes the benefits of network reciprocity in social dilemma experiments”为题,于2017年12月20日在线发表在《美国科学院院报》(PNAS)。

 

现实社会中,人们往往面临各种社会、经济、科技和军事等问题,如国家间的博弈与冲突、贸易谈判与贸易制裁、网络攻击、科技竞争、群体对抗等(这些问题被统称为困境问题)。这些问题往往很难找到合理、有效的解决办法,给人们带来许多的困惑和无奈。然而,现实经验表明:个体通过互相合作可以解决这些困境问题。因此,如何在竞争激烈的环境下维持稳定的群体合作(因为单个个体处于劣势)成为解决困境问题的关键所在,这引起科学家分别从自然科学不同领域来思考这一问题(如数理科学家从合作动力学的角度,信息科学家从合作优化的视角,生物学家从合作演化的角度等),也是使之成为自然科学领域持续关注的一个研究热点(2005年被Science列为25个最重要的科学问题之一)。

 

借用博弈框架,他们设计了混合群体(也称为非网络群体,即每个个体可以和所有个体等概率的进行博弈,因此个体相互作用网无固定的拓扑)和网络群体(即个体相互作用的搭档是固定的,呈现特定的网络拓扑结构)两种行为决策环境,并邀请300多名志愿者参加匿名实验。每名参与者可以选择合作、非合作两种策略,并反复进行博弈以产生行为决策的结构化数据。

 

研究结果表明,相比于混合群体,网络群体能够有效地促使处于劣势的合作者聚集成团簇(如图),从而维持稳定的合作水平,使群体获得较高的收益。这一现象被称为网络互惠(network reciprocity),这也是国内第一次通过行为实验证实网络互惠对解决社会与技术困境问题可提供可行的帮助。研究进一步发现,如果将惩罚作为第三种策略引入网络群体,这种新的策略选择将会在一定程度上破坏已形成的合作团簇,从而降低网络互惠的功效。

 

这一研究成果具有重要的现实意义,对解决社会、科技、军事问题可提供一定的科学依据。当前,网络暴力频发、交通拥堵令人担忧、教育资源日趋紧张、无人系统混乱等,人们寄希望于个体的相互合作来解决这些困境问题。例如,交通问题中,在既定的交通道路和导航信息环境下,个体只有自觉地通过人类作用网络自组织形成合作模式(如文明并道、礼让红灯等)方可从根本上解决拥堵问题。在此环境下,应慎用惩罚策略,从而避免打破人类作用网已形成的合作范式。此外,这一研究对理解和解决当前国际事务中的经济困境问题也可提供一定的借鉴作用。例如,国际贸易的发展使得世界各国在贸易领域建立了固有的网络联系,有效的促进了全球贸易的发展。当一国为了自身利益启动对他国的贸易制裁时,必然引发对方的反制裁和对抗;我们的研究表明这种惩罚措施的加入会破坏原有的合作模式,不但不能促进合作,反而会减少双方的收益,从而降低全球贸易水平。 


因此,在解决面临的困境问题时,双方应以合作、协商的方式找到解决问题的途径,而慎用惩罚手段,才能有效维护社会的和谐、稳定和健康发展。


PNAS是《美国科学院院报》(Proceedings of the National Academy of Sciences of the United States of America, 缩写。它是美国国家科学院的院刊,亦是公认的世界四大名刊(Cell,Nature,Science,PNAS)之一,百年经典期刊。自1914年创刊至今,PNAS提供具有高水平的前沿研究报告、学术评论、学科回顾及前瞻、学术论文以及美国国家科学学会学术动态的报道和出版。PNAS收录的文献涵盖医学、化学、生物、物理、大气科学、生态学和社会科学,2014年最新发布的影响因子为9.803,特征因子(Eigenfactor) 为1.6033(2011)[1-2]  。

AI先锋

ID:EnlightAI

关注人工智能行业发展,介绍人工智能技术与产品

内容概要:本文详细介绍了利用Norrbin/Fossen模型和反步法(PID)控制算法实现无人船(USV)路径跟踪的方法,特别是在存在洋流扰动的情况下。首先,文章解释了Norrbin模型用于描述船舶低频运动特性的优势,并展示了如何将洋流速度从惯性坐标系转换到船体坐标系。接着,讨论了LOS制导算法的改进,使其能够适应洋流影响。然后,阐述了反步法控制律的设计及其与PID控制的结合,强调了虚拟控制量的设计和参数调整的重要性。最后,通过Matlab/Simulink进行建模和仿真实验,验证了该方法的有效性,并提供了详细的代码实现和可视化结果。 适合人群:从事无人船控制系统研究和开发的技术人员,尤其是对路径跟踪和海洋环境扰动补偿感兴趣的工程师和研究人员。 使用场景及目标:适用于需要提高无人船在复杂海况下路径跟踪精度的应用场合,如海洋测绘、环境监测等。目标是通过引入先进的控制算法,减少洋流等外界因素对路径跟踪性能的影响,从而提高系统的鲁棒性和可靠性。 其他说明:文中提供的代码片段和仿真结果有助于读者理解和复现实验过程。同时,作者分享了许多实践经验,如参数调整技巧和常见错误避免,对于初学者非常有帮助。此外,文章还提出了未来的研究方向,如加入自适应观测器以进一步改善抗扰动性能。
内容概要:本文详细介绍了ResNet神经网络模型的构建与实现。首先定义了一个通用的倒置瓶颈块(UniversalInvertedBottleneckBlock),它包括三个卷积层和批标准化层,并引入了残差连接机制。接着基于此构建了Bottleneck模块,进一步扩展了倒置瓶颈块的功能,同样包含了跳跃连接来缓解梯度消失问题。最后,ResNet类整合了多个Bottleneck模块形成完整的网络结构,通过_make_layer方法按需创建不同深度的网络层。文中还提供了resnet50函数用于快速实例化预定义配置下的ResNet模型,并展示了如何创建模型实例、准备输入数据以及进行前向传播计算。 适合人群:对深度学习有一定了解,特别是熟悉PyTorch框架的开发者或研究人员;希望深入理解ResNet架构及其组件的工作原理的学习者。 使用场景及目标:①理解ResNet中倒置瓶颈结构的设计思想及其实现细节;②掌握如何利用PyTorch搭建复杂神经网络模型;③学习如何通过调整网络层数和参数设置来自定义适合特定任务需求的ResNet模型。 阅读建议:本文代码量较大,建议读者先熟悉PyTorch的基础操作,然后逐步阅读每个类和函数的定义,注意理解各部分之间的关系。可以尝试修改代码中的参数或者添加新的功能来进行实践练习。同时,可以通过查阅官方文档或相关资料加深对某些概念的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值