【论文写作】一篇完整的论文结构及各部分内容具体写什么 一篇论文,好的写作可以让发表过程更为顺利。同时将自己的工作简洁、清晰的用文字展示出来是一项非常重要的能力。在写作工程中,不能只埋头硬写,而是要时刻思考,捋顺全文逻辑关系,清楚每一段的内容及意义,以及与前后文的联络关系。尽量保证自己的论文,没有一句废话,也没有含糊不清的地方。逻辑紧凑,内容详实,表达简洁。要达到上面的要求,首先需要了解一篇完整的论文,包括哪些具体的结构,以及各结构写什么内容,和各结构之间的关系。
【论文撰写】不都是分析参考文献嘛?引言和文献综述的区别 目的引言的主要目的是为研究提供背景信息,说明研究的动机、意义和研究问题,并概述研究的目标和方法。内容研究背景:简要介绍研究领域的总体情况,突出研究的主题和重要性。研究问题:明确研究的核心问题,通常是通过识别研究的空白或挑战来体现。研究目的:说明论文要解决的问题以及所采用的方法。意义:简述研究对学术界或实践的贡献。结构安排(可选):简单说明文章的章节结构。特点概述性强,通常较为简短。重点突出研究问题和目标,而非详细讨论相关文献。
【国产大模型】DeepSeek发布推理版本r1,性能超越openAI o1 DeepSeek-R1-Lite预览版在解决这些复杂数学问题时拥有极强的“拆解能力”,能够将复杂任务分解为更小的步骤并逐一执行,从而提高其准确性。当时,DeepSeek V2的API定价约等于谷歌的七分之一,GPT-4 Turbo的七十分之一。在前不久发布模型名为DeepSeek-R1-Lite,预览版在难度较高数学和代码任务上超越o1-preview,大幅领先GPT-4o等。随着思维长度的增加,DeepSeek-R1-Lite-Preview 在 AIME 上的得分稳步提高。推理时间更长,性能更佳。
【参考文献】如何显示在Word导航窗格 我们知道 word自带样式里的 标题1 标题2 …是可以显示在导航窗格里的。出来的时候,参考文献带前面的小黑三角号,就可以了。点击三角号可以折叠。依次类推,把 大纲级别 改为 2级 3级…都是可以显示在导航窗格的。选中“参考文献”,如下图,右击进入段落。
!谷歌百度危机!刚刚【ChatGPT】正式成为一款【搜索引擎】 在LLM领域,OpenAI再次成为。北京时间 11 月 1 日凌晨1点零1分,在 ChatGPT 两岁生日之际,OpenAI 宣布为 ChatGPT 推出了最新的人工智能搜索体验。OpenAI官方账号称:推出 ChatGPT 搜索 ChatGPT 现在可以以比以前更好的方式搜索网络,因此您可以快速、及时地获得带有相关网络资源链接的答案。进入链接,可以看到网址上写着这意味着,OpenAI突破了时间的限制,现在可以比以前更好地搜索网络,快速、及时地获得答案,并附上相关网络资源的链接。
微信公众号推文,关于LLM等 超强!深度学习Top10算法!Agent调研–19类Agent框架对比万字解读AI Agent架构体系,API和RPA将成为重点苹果加入战局,携 300 亿参数的 AI 大模型 MM1 “炸场”!使用Pytorch从零实现Transformer模型ResNet最新变体!性能反超Transformer,模型准确率达98.42%GNN与Transformer创新结合!模型性能起飞!24年最好发论文的方向: 魔改Mamba!(附源码)结合Transformer与Mamba,Jamba来了!新架构Mamba更新二代
生成模型可用于解决数学研究层面的问题 Meta和巴黎理工学院的研究人员共同探讨了一个困扰数学界长达132年的问题:李雅普诺夫函数。简单来说,李雅普诺夫函数用于判断一个动力系统相对于其平衡点或轨道,随着时间无限延长后是否能保持全局稳定。论文标题:Global Lyapunov functions: a long-standing open problem in mathematics, with symbolic transformers。
DeepMind再发文章,大模型是否有推理能力? 文中介绍说,DeepMind 的研究者训练了一个参数量为 2.7 亿的 Transformer 模型,这个模型无需依赖复杂的搜索算法或启发式算法就能达到「特级大师( Grandmaster-Level )」的国际象棋水平,优于 AlphaZero 的策略和价值网络(不含 MCTS)以及 GPT-3.5-turbo-instruct 模型。就连该论文的作者也在「结论」部分写道:「我们的工作为快速增长的文献增添了新的内容,这些文献表明,复杂而精密的算法可以被蒸馏为前馈 transformer,
评估LLM数学推理能力的新标准 数学推理是一项关键的认知技能,它支持许多科学和实际应用中的问题解决。OpenAI 2021 年提出的 GSM8K(Grade School Math 8K)小学数学题数据集已成为评估 LLM 数学推理能力的流行基准。尽管它包含了详细的解决方案的简单数学问题,适合使用思维链(CoT)提示等技术,但它只提供了一个固定问题集上的单一指标。这种局限性限制了对模型数学推理能力的全面洞察。此外,GSM8K 的流行和普遍性可能会增加意外数据污染的风险。
因为一句废话,大模型无法解决小学数学题? 前段时间,François Chollet 还发帖说,LLM 通过提示使用时,无法理解与训练数据中情况大相径庭的情况,因此不具备通用智能。他认为,**LLM 的作用主要是作为实际 AGI 的知识和程序存储,它们是一种记忆形式,而智能不仅仅是记忆。星期天,他摘的猕猴桃数量是星期五的两倍。奥利弗有多少个猕猴桃?正如研究人员在他们的论文中所说:「我们研究了这些模型中数学推理的脆弱性,并证明随着问题中子句数量的增加,它们的性能显著下降。星期天,他摘的猕猴桃数量是星期五的两倍,但其中 5 个比平均大小要小。