强化学习系列 6 : Actor Critic

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Julialove102123/article/details/71308154
<6>Actor Critic
 Actor Critic (演员评判家), 它合并了 以值为基础 (比如 Q learning) 和 以动作概率为基础 (比如 Policy Gradients) 两类强化学习算法.

 Actor-Critic :
 Actor 的前生是 Policy Gradients , 可以在连续动作中选取合适的动作, 而 Q-learning 做这件事会瘫痪. 那为什么不直接用 Policy Gradients 呢? 
 Critic 的前生是以值为基础的学习法(Q-learning 、其他的算法) , 能进行单步更新, 而传统的 Policy Gradients 则是回合更新, 这降低了学习效率.


Actor 和 Critic, 他们都能用不同的神经网络来代替 . 在 Policy Gradients 中, 现实中的奖惩会左右 Actor 的更新情况. Policy Gradients 也是靠着这个来获取适宜的更新. 那么何时会有奖惩这种信息能不能被学习呢? 这看起来不就是 以值为基础的强化学习方法做过的事吗. 那我们就拿一个 Critic 去学习这些奖惩机制, 学习完了以后. 由 Actor 来指手画脚, 由 Critic 来告诉 Actor 你哪些指得好, 哪些指得差, Critic 通过学习环境和奖励之间的关系, 能看到现在所处状态的潜在奖励, 所以用它来指点 Actor 便能使 Actor 每一步都在更新, 如果使用单纯的 Policy Gradients, Actor 只能等到回合结束才能开始更新


增加单步更新属性:

但是事物终有它坏的一面, Actor-Critic 涉及到了两个神经网络, 而且每次都是在连续状态中更新参数, 每次参数更新前后都存在相关性, 导致神经网络只能片面的看待问题, 甚至导致神经网络学不到东西. Google DeepMind 为了解决这个问题, 修改了 Actor Critic 的算法。


那我们该怎么解决呢?这就又出现了升级版的DDPG!!!


展开阅读全文

没有更多推荐了,返回首页