CS 131 Computer Vision: Foundations and Applications Fall 2014-2015

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Julialove102123/article/details/79960985
Event TypeDateDescriptionCourse Materials
Lecture 1Tuesday 
September 26
Course introduction 
Computer vision overview 
Course logistics 
Introduction slides [pptx] [pdf] 
Logistics slides [pptx] [pdf] 
Lecture 1 notes [pdf] 
Lecture 2Thursday 
September 28
Color + Math basics 
Physics of light 
Human encoding of color 
Color Spaces 
White Balancing 
Vectors and Matrices
Color spaces slides [pptx] [pdf] 
Lecture 2 notes [pdf] 
python/numpy tutorial [pdf]
HW0 DueMonday 
October 2, 11:59pm
Homework #0 due 
Basics
[Homework #0]
Lecture 3Tuesday 
October 3
Linear algrebra 
Transformation matrixes 
Eigenvalues and eigenvectors 
Matrix calculus and hessian
Linear algebra slides [pptx] [pdf] 
Lecture 3 notes [pdf] 
Lecture 4Thursday 
October 5
Pixels and filters 
Pixels and image representation 
Linear systems 
Convolutions and cross-correlations
Pixels and filters slides [pptx] [pdf] 
Lecture 4 notes [pdf] 
HW1 DueMonday 
October 10, 11:59pm
Homework #1 due 
Filters - Instagram
[Homework #1]
Lecture 5Tuesday 
October 10
Edge detection 
Derivative of gaussians 
Sobel filters 
Canny edge detector
Edge detection slides [pptx] [pdf] 
Lecture 5 notes [pdf] 
Lecture 6Thursday 
October 12
Features and fitting 
RANSAC 
Local features 
Harris corner detection
Features and fitting slides [pptx] [pdf] 
Lecture 6 notes [pdf] 
Lecture 7Tuesday 
October 17
Feature descriptors 
Difference of gaussians 
Scale invariant feature transform
Image stitching
Feature descriptors slides [pptx] [pdf] 
Lecture 7 notes [pdf] 
HW2 DueWednesday 
October 18, 11:59pm
Homework #2 due 
Edges - Smart car lane detection
[Homework #2]
Lecture 8Thursday 
October 19
Resizing 
Energy function 
Seam carving
Resizing slides [pptx] [pdf] 
Lecture 8 notes [pdf] 
Lecture 9Tuesday 
October 24
Semantic segmentation 
Gestalt theory of perceptual grouping 
Aggomerative clustering
Superpixels and oversegmentation
Semantic segmentation slides [pptx] [pdf] 
Lecture 9 notes [pdf] 
HW3 DueWednesday 
October 25, 11:59pm
Homework #3 due 
Panorama - Image stitching
[Homework #3]
Lecture 10Thursday 
October 26
Clustering 
K-means 
Mean shift
Clustering slides [pptx] [pdf] 
Lecture 10 notes [pdf] 
Lecture 11Tuesday 
October 31
Object recognition 
Nearest neighbors 
Classification pipeline
Object recognition slides [pptx] [pdf] 
Lecture 11 notes [pdf] 
HW4 DueWednesday 
November 1, 11:59pm
Homework #4 due 
Resizing - Seam carving
[Homework #4]
Lecture 12Thursday 
November 2
Dimensionality reduction
Singular value decomposition
Principal component analysis
Dimensionality reduction slides [pptx] [pdf] 
Lecture 12 notes [pdf] 
Lecture 13Tuesday 
November 7
Face identification 
Eigenfaces and fisherfaces 
Linear Discriminant Analysis
Face identification slides [pptx] [pdf] 
Lecture 13 notes [pdf] 
HW5 DueWednesday 
November 8, 11:59pm
Homework #5 due 
Segmentation - Clustering
[Homework #5]
Lecture 14Thursday 
November 9
Visual Bag of Words 
Texture features 
Visual bag of words 
Image pyramids
Visual bag of words slides [pptx] [pdf] 
Lecture 14 notes [pdf] 
Lecture 15Tuesday 
November 14
Detecting objects by parts 
Deformable parts model
Object detection
Deformable parts slides [pptx] [pdf] 
Lecture 15 notes [pdf] 
HW6 DueWednesday 
November 15, 11:59pm
Homework #6 due 
Recognition - Classification
[Homework #6]
Lecture 16Thursday 
November 16
Image classification 
Imagenet 
Semantic hierarchy 
Fine grained classes
Detection slides [pptx] [pdf] 
Lecture 16 notes [pdf] 
Lecture 17Tuesday 
November 28
Motion 
Optical Flow
Lucas-Kanade method
Horn-Schunk Method
Pyramids for large motion
Common Fate
Motion [pptx] [pdf] 
Lecture 17 notes [pdf] 
HW7 DueWednesday 
November 29, 11:59pm
Homework #7 due 
Object detection - constellation models
[Homework #7]
Lecture 18Thursday 
November 30
Tracking
Feature Tracking
Lucas Kanade Tomasi (KLT) tracker
Tracking slides [pptx] [pdf] 
Lecture 18 notes [pdf] 
Lecture 19Tuesday 
December 5
Introduction to deep learning
Convolutional neural networks
Backpropagation
Deep learning slides [pptx] [pdf] 
Lecture 19 notes [pdf] 
HW8 DueWednesday 
December 6, 11:59pm
Homework #8 due 
Tracking - Optical flow
[Homework #8]
Lecture 20Thursday
December 7
Final Review
Summary of class
Final review talk [pptx] [pdf]
FinalMondayDecember 11,12:15 to 3:15pm
Location: 320-105
Practice final [pdf]

阅读更多

扫码向博主提问

女王の专属领地

非学,无以致疑;非问,无以广识
  • 擅长领域:
  • 目标检测
  • 深度学习
  • 机器算法
  • 计算机视觉
  • yolo
去开通我的Chat快问
换一批

没有更多推荐了,返回首页