方向梯度直方图(Histogram Of Gradient)详解

特征描述子(Feature Descriptor)

特征描述子就是图像的表示,抽取了有用的信息,丢掉了不相关的信息。通常特征描述子会把一个w*h*3(宽高3,3个channel)的图像转换成一个长度为n的向量/矩阵。比如一副64*128*3的图像,经过转换后输出的图像向量长度可以是3780。

什么样子的特征是有用的呢?假设我们想要预测一张图片里面衣服上面的扣子,扣子通常是圆的,而且上面有几个洞,那你就可以用边缘检测(edge detector),把图片变成只有边缘的图像,然后就可以很容易的分辨了,那么对于这张图边缘信息就是有用的,颜色信息就是没有用的。而且好的特征应该能够区分纽扣和其它圆形的东西的区别。

方向梯度直方图(HOG)中,梯度的方向分布被用作特征。沿着一张图片X和Y轴的方向上的梯度是很有用的,因为在边缘和角点的梯度值是很大的,我们知道边缘和角点包含了很多物体的形状信息。(HOG特征描述子可以不局限于一个长度,也可以用很多其他的长度,这里只记录一种计算方法。)

怎么计算方向梯度直方图呢?

我们会先用图像的一个patch来解释。

第一步:预处理

Patch可以是任意的尺寸,但是有一个固定的比例,比如当patch长宽比1:2,那patch大小可以是100*200, 128*256或者1000*2000,但不可以是101*205。

这里有张图是720*475的,我们选100*200大小的patch来计算HOG特征,把这个patch从图片里面抠出来,然后再把大小调整成64*128。

第二步:计算梯度图像

首先我们计算水平和垂直方向的梯度,再来计算梯度的直方图。可以用下面的两个kernel来计算,也可以直接用OpenCV里面的kernel大小为1的Sobel算子来计算。

horizontal_vertical_gradient_kernel (水平和垂直梯度)

调用OpenCV代码如下:

// C++ gradient calculation.
// Read image
Mat img = imread("bolt.png");
img.convertTo(img, CV_32F, 1/255.0);

// Calculate gradients gx, gy
Mat gx, gy;
Sobel(img, gx, CV_32F, 1, 0, 1);
Sobel(img, gy, CV_32F, 0, 1, 1);

# Python gradient calculation 

# Read imageim = cv2.imread('bolt.png')
im = np.float32(im) / 255.0

# Calculate gradient
gx = cv2.Sobel(img, cv2.CV_32F, 1, 0, ksize=1)
gy = cv2.Sobel(img, cv2.CV_32F, 0, 1, ksize=1)

接着,用下面的公式来计算梯度的幅值g和方向theta:

图像学习之如何理解方向梯度直方图(Histogram Of Gradient)

gradient_direction_formula(梯度方向计算)

可以用OpenCV的cartToPolar函数来计算:

// C++ Calculate gradient magnitude and direction (in degrees)
Mat mag, angle;
cartToPolar(gx, gy, mag, angle, 1);

# Python Calculate gradient magnitude and direction ( in degrees )
mag, angle = cv2.cartToPolar(gx, gy, angleInDegrees=True)

计算得到的gradient图如下:

图像学习之如何理解方向梯度直方图(Histogram Of Gradient)

左边:x轴的梯度绝对值         中间:y轴的梯度绝对值             右边:梯度幅值

从上面的图像中可以看到x轴方向的梯度主要凸显了垂直方向的线条,y轴方向的梯度凸显了水平方向的梯度,梯度幅值凸显了像素值有剧烈变化的地方。(注意:图像的原点是图片的左上角,x轴是水平的,y轴是垂直的)

图像的梯度去掉了很多不必要的信息(比如不变的背景色),加重了轮廓。换句话说,你可以从梯度的图像中轻而易举的发现有个人。在每个像素点,都有一个幅值(magnitude)和方向,对于有颜色的图片,会在3个channel上都计算梯度那么相应的幅值就是3个channel上最大的幅值,角度(方向)是最大幅值所对应的角

第三步:在8*8的网格中计算梯度直方图

在这一步,我们先把整个图像划分为若干个8x8的小单元,称为cell,并计算每个cell的梯度直方图。这个cell的尺寸也可以是其他值,根据具体的特征而定。

为什么我们要把图像分成若干个8x8的小单元?

这是因为对于一整张梯度图,其中的有效特征是非常稀疏的,不但运算量大,而且效果可能还不好。于是我们就使用特征描述符来表示一个更紧凑(compact)的特征。

一个8*8的图像有8*8*3=192个像素值(彩色图有3个channel),每个像素的梯度包括两个值(幅值magnitude和方向direction,magnitude取3个channel中最大值,然后direction取最大magnitude值对应的direction值),因此一个8x8的小单元(cell)就包含了8*8*2=128个值,因为每个像素包括梯度的大小和方向。

现在我们要把这个8x8的小单元用长度为9的数组来表示,这个数组就是梯度直方图。这种表示方法不仅使得特征更加紧凑,而且对单个像素值的变化不敏感,也就是能够抗噪声干扰。

图像学习之如何理解方向梯度直方图(Histogram Of Gradient)

这个patch的大小是64*128,把它分割成若干个8*8的cell,那么一共有(64/8)*(128/8) = 8*16=128个网格,对于64*128的这幅patch来说,8*8的网格已经足够大来表示有趣的特征比如脸,头等等。

直方图是有9个bin的向量,代表的是角度0,20,40,60.....160。

我们先来看看每个8*8的cell的梯度都是什么样子:

图像学习之如何理解方向梯度直方图(Histogram Of Gradient)

中间这个图的箭头是梯度的方向,长度是梯度的大小,可以发现箭头的指向方向是像素强度变化方向,幅值是强度变化的大小。

右边的梯度方向矩阵中可以看到角度是0-180度,不是0-360度,这种被称之为"无符号"梯度("unsigned" gradients),因为一个梯度和它的负数是用同一个数字表示的,也就是说一个梯度的箭头以及它旋转180度之后的箭头方向被认为是一样的。那为什么不用0-360度的表示呢?在事件中发现unsigned gradients比signed gradients在行人检测任务中效果更好。一些HOG的实现中可以让你指定signed gradients。

下一步就是为这些8*8的网格创建直方图,直方图包含了9个bin来对应0,20,40,...160这些角度。

下面这张图解释了这个过程。我们用了上一张图里面的那个网格的梯度幅值和方向。根据方向选择用哪个bin, 根据幅值来确定这个bin的大小。先来看蓝色圆圈圈出来的像素点,它的角度是80,幅值是2,所以它在第五个bin里面加了2,再来看红色的圈圆圈圈出来的像素点,它的角度是10,幅值是4,因为角度10介于0-20度的中间(正好一半),所以把幅值一分为二地放到0和20两个bin里面去。

图像学习之如何理解方向梯度直方图(Histogram Of Gradient)

这里有个细节要注意,如果一个角度大于160度,也就是在160-180度之间,我们知道这里角度0,180度是一样的,所以在下面这个例子里,像素的角度为165度的时候,要把幅值按照比例放到0和160的bin里面去。

图像学习之如何理解方向梯度直方图(Histogram Of Gradient)

把这8*8的cell里面所有的像素点都分别加到这9个bin里面去,就构建了一个9-bin的直方图,上面的网格对应的直方图如下:

图像学习之如何理解方向梯度直方图(Histogram Of Gradient)

可以看到直方图中,0度和160附近有很大的权重,说明了大多数像素的梯度向上或者向下,也就是这个cell是个横向边缘

现在我们就可以用这9个数的梯度直方图来代替原来很大的三维矩阵,即代替了8x8x2个值。

第四步: 16*16块(block)归一化

图像学习之如何理解方向梯度直方图(Histogram Of Gradient)

hog-16x16-block-normalization

在前面的步骤中,我们基于图像的梯度对每个cell创建了一个直方图。

但是图像的梯度对整体光照非常敏感,比如通过将所有像素值除以2来使图像变暗,那么梯度幅值将减小一半,因此直方图中的值也将减小一半。 理想情况下,我们希望我们的特征描述符不会受到光照变化的影响,那么我们就需要将直方图“归一化” 。

在说明如何归一化直方图之前,先看看长度为3的向量是如何归一化的。

假设我们有一个向量 [128,64,32],向量的长度为,这叫做向量的L2范数。将这个向量的每个元素除以146.64就得到了归一化向量 [0.87, 0.43, 0.22]

现在有一个新向量,是第一个向量的2倍 [128x2, 64x2, 32x2],也就是 [256, 128, 64],我们将这个向量进行归一化,你可以看到归一化后的结果与第一个向量归一化后的结果相同。所以,对向量进行归一化可以消除整体光照的影响。

知道了如何归一化,现在来对block的梯度直方图进行归一化(注意不是cell),一个block有4个直方图,将这4个直方图拼接成长度为36的向量,然后对这个向量进行归一化。

因为使用的是滑动窗口,滑动步长为8个像素,所以每滑动一次,就在这个窗口上进行归一化计算得到长度为36的向量,并重复这个过程

第五步:计算HOG特征向量

为了计算这整个patch的特征向量,需要把36*1的向量全部合并组成一个巨大的向量。向量的大小可以这么计算:

  1. 我们有多少个16*16的块?水平7个,垂直15个,总共有7*15=105次移动。

  2. 每个16*16的块代表了36*1的向量。所以把他们放在一起也就是36*105=3780维向量。

这个得到的长度3780的向量就可以作为整个图像的特征描述符。

通常HOG特征描述子是画出8*8网格中9*1归一化的直方图,见下图。你可以发现直方图的主要方向捕捉了这个人的外形,特别是躯干和腿。

图像学习之如何理解方向梯度直方图(Histogram Of Gradient)

为了显示效果更明显,我把cell的尺寸改为(16, 16),对于每一个cell,画出它归一化后的梯度直方图。如下图所示,我们可以很明显的看出一个人的轮廓。

参考:

HOG特征详解

Histogram of Oriented Gradients

 

  • 17
    点赞
  • 60
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值