1. 概述
在深度学习实践中,对于简单的模型和相对较小的数据集,我们可以使用CPU完成建模过程。例如在MNIST数据集上进行手写数字识别,我们可以使用CPU来完成,采用经典的LeNet-5模型只需要十几分钟就能完成(具体取决于电脑配置)。
然而,为了达到更好的效果或者构建更复杂的模型,一般需要更大的数据集,例如经典的ImageNet数据集。假如使用CPU训练模型将显得无比吃力(将会花费很长长长长长时间),此时GPU就可以派上用场了,利用其强大的并行计算能力训练模型会变快很多。
本次教程主要分为以下几个步骤:
- 安装显卡驱动
- 安装CUDA
- 安装CuDNN
- 安装TensorFlow-GPU
注意:请确保已安装python(若未安装请参考其它教程),并且最好为python3.5或3.6版本。
由于NVIDIA网站有时下载速度慢,提供百度网盘下载链接:
cuda_9.0.176_w