一道数论小练习

Let p, N be integers such that p divides N. Prove that for any integer X, [[X mod N] mod p ] = [X mod p ]. Show that, in contrast, [[X mod p ] mod N] need not equal [X mod N].

1.

∵p divides N

∴ let N = kp

∵ if X <= N:

[[X mod N] mod p] = [X mod p]

else if X > N:

let X = dN + c =dkp + c (c<N)

[[X mod N] mod p] = [[(dN + c) mod N] mod p] = [[c mod N] mod p] = [c mod p]

[X mod p] = [(dkp + c) mod p] = [c mod p]

thus:

[[X mod N] mod p] = [X mod p]

 

2.

when p = N -> [[X mod p ] mod N] equals to [X mod N].

when p <> N:

∵p divides N

∴p < N

thus : [[X mod p ] mod N] <= p for certain

while [X mod N] is not needed to be lower than p.

so [[X mod p ] mod N] need not equal [X mod N]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值