Let p, N be integers such that p divides N. Prove that for any integer X, [[X mod N] mod p ] = [X mod p ]. Show that, in contrast, [[X mod p ] mod N] need not equal [X mod N].
1.
∵p divides N
∴ let N = kp
∵ if X <= N:
[[X mod N] mod p] = [X mod p]
else if X > N:
let X = dN + c =dkp + c (c<N)
[[X mod N] mod p] = [[(dN + c) mod N] mod p] = [[c mod N] mod p] = [c mod p]
[X mod p] = [(dkp + c) mod p] = [c mod p]
thus:
[[X mod N] mod p] = [X mod p]
2.
when p = N -> [[X mod p ] mod N] equals to [X mod N].
when p <> N:
∵p divides N
∴p < N
thus : [[X mod p ] mod N] <= p for certain
while [X mod N] is not needed to be lower than p.
so [[X mod p ] mod N] need not equal [X mod N]