题目大意:给定 N 个点和一些有向边,求是否能够将这个有向图的点分成两个集合,使得同一个集合内的任意两个点都有双向边联通。
题解:反向思考,对于没有双向边的两个点一定不能在同一个集合中。因此,构建一个图,若两点之间有边,则表示这两个点不能在同一个集合中。进行二分图染色判定即可,若是二分图,则满足条件,反之则不满足。
代码如下
#include <bits/stdc++.h>
#define pb push_back
using namespace std;
const int maxn=110;
int n;bool mp[maxn][maxn];
vector<int> G[maxn];
int cor[maxn];
void read_and_parse(){
memset(mp,0,sizeof(mp));
memset(cor,0,sizeof(cor));
for(int i=1;i<=n;i++)G[i].clear();
for(int i=1,to;i<=n;i++)while(scanf("%d",&to)&&to)mp[i][to]=1;
for(int i=1;i<=n;i++)for(int j=1;j<=n;j++)if(i!=j&&(!mp[i][j]||!mp[j][i]))G[i].pb(j);
}
bool dfs(int u,int c){
cor[u]=c;
for(auto v:G[u]){
if(cor[v]==c)return 0;
if(!cor[v]&&!dfs(v,3-c))return 0;
}
return 1;
}
void solve(){
for(int i=1;i<=n;i++)if(!cor[i]&&!dfs(i,1))return (void)puts("NO");
puts("YES");
}
int main(){
while(scanf("%d",&n)!=EOF){
read_and_parse();
solve();
}
return 0;
}