树状数组求区间最大值

 

转自LbyG

讲这个的博文已经不少了,但感觉不够详细不够通俗易懂,所以我尝试着更详细更通俗易懂的说一下我的理解。
 
这个算法只支持单点修改和区间查询最值。每一次维护和查询的时间复杂度都是O((logn)^2),但这是满打满算的时间复杂度。
假设是要维护和查询区间的最大值(最小值将max改成min 就好了)
这个算法和树状数组维护和查询区间和的方法很相似:
 
一、数组的含义
1、在维护和查询区间和的算法中,h[x]中储存的是[x,x-lowbit(x)+1]中每个数的和,
 
2、在求区间最值的算法中,h[x]储存的是[x,x-lowbit(x)+1]中没个数的最大值。
求区间最值的算法中还有一个a[i]数组,表示第i个数是多少。
(其中lowbit(x) = x & (-x) 这个学过树状数组的应该都知道吧。。。。。)
 
二、单点修改后的更新
1、在维护区间和的算法中,是这样维护单点修改的
 


void updata(int i, int val)

{

	while (i <= n)

	{

		h[i] += val;

		i += lowbit(i);

	}

}

2、在来看维护区间最大值的算法,我们先看一整段区间[1,n]都需要初始化的情况。(即 h[] 数组都为0,现在需要用 a[] 数组更新 h[] 数组)//ps 个人在这有点晕....为什么要在上次最大值和要修改的数之间取最大值...万一上次最大值是要被修改的值呢,还有就是关于时间复杂度,没明白为什么是nlogn,而不是logn....(如果说用a[i]来更新h[i]不应该是n+logn吗),如果说是刚开始初始化a[i]导致时间复杂度为nlogn,那么简化的logn*logn不久也是n*log*nlogn吗.....


void updata(int i, int val)

{

	while (i <= n)

	{

		h[i] = max(h[i], val);

		i += lowbit(i);

	}

}

这样是可行,于是我们就有了一个O(n*logn)的维护方法,即当要更新一个数的时候,把 h[] 数组清零, 然后用数组 a[] 去更新 h[] 数组。
但这个复杂度显然太高了。
可以发现:对于x,可以转移到x的只有,x-2^0,x-2^1,x-2^2,.......,x-2^k (k满足2^k < lowbit(x)且2^(k+1)>=lowbit(x))
举例:
若 x = 1010000
= 1001000 + lowbit(1001000) = 1001000 + 1000 = 1001000 + 2^3
= 1001100 + lowbit(1001100) = 1001100 + 100 = 1001100 + 2^2
= 1001110 + lowbit(1001110) = 1001110 + 10 = 1001110 + 2^1
= 1001111 + lowbit(1001111) = 1001111 + 1 = 1001111 + 2^0
所以对于每一个h[i],在保证h[1...i-1]都正确的前提下,要重新计算h[i]值的时间复杂度是O(logn),具体方法如下:
 


	h[x] = a[x];

	lx = lowbit(x);

	for (i=1; i<lx; i<<=1)

	h[x] = max(h[x], h[x-i]);

	x += lowbit(x);

这样,我们就可以得到一个和树状数组维护区间合算法很像的算法


void updata(int x)

{

	int lx, i;

	while (x <= n)

	{

		h[x] = a[x];

		lx = lowbit(x);

		for (i=1; i<lx; i<<=1)

			h[x] = max(h[x], h[x-i]);

		x += lowbit(x);

	}		

}

这个算法的时间复杂度是O((logn)^2),所以现在就可以在O((logn)^2)的时间内完成最值的区间维护了。

 

三、区间查询
1、树状数组求区间合的算法是这样子的:


int query(int i)

{

	int ans = 0;

	while (i > 0)

	{

		ans += h[i];

		i -= lowbit(i);

	}

	return ans;

}

2、树状数组求区间最大值:
直接照搬求区间合的方法显然是不行的。
因为区间合中,要查询[x,y]的区间合,是求出[1,x-1]的合与[1,y]的合,然后相减就得出了[x,y]区间的合。
而区间最值是没有这个性质的,所以只能够换一个思路。
设query(x,y),表示[x,y]区间的最大值
因为h[y]表示的是[y,y-lowbit(y)+1]的最大值。
所以,可以这样求解:
若y-lowbit(y) > x ,则query(x,y) = max( h[y] , query(x, y-lowbit(y)) );
若y-lowbit(y) <=x,则query(x,y) = max( a[y] , query(x, y-1);
这个递归求解是可以求出解的,且可以证明这样求解的时间复杂度是O((logn)^2)
具体代码:
 


int query(int x, int y)

{

	int ans = 0;

	while (y >= x)

	{

		ans = max(a[y], ans);

		y --;

		for (; y-lowbit(y) >= x; y -= lowbit(y))

			ans = max(h[y], ans);

	}

	return ans;

}

 

时间复杂度的证明:(换成二进制来看)
因为y经过Logn次变换以后,其与x不同的最高位至少下降了1位,所以最多进行(logn)^2次变换
举例:
y = 1010000
x = 1000001
1010000 
=> 1001111 => 1001110 =>1001100 =>1001000
=>1000111 => 1000110 => 1000100 
=> 1000011 = > 1000010
=>1000001
=>1000000 < 1000001
 

 

 

 

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值