超详细 Ubuntu安装PyTorch步骤

本文档详细介绍了在Ubuntu系统中如何安装PyTorch、创建conda环境、安装CUDA和cuDNN(如有需要),以及配置Jupyter Notebook的过程。首先建议安装Anaconda来方便管理依赖,然后在PyTorch官网获取适合系统的安装指令,创建conda环境,并激活环境。接着在环境中安装PyTorch和Jupyter Notebook所需包。最后检查CUDA是否可用,完成安装后,可在Jupyter Notebook中进行深度学习实验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

安装PyTorch之前,强烈建议先在Ubuntu中安装Anaconda,从而更好的管理PyTorch需要的包及包对应的版本。

STEP1:进入PyTorch官网查看安装版本和指令

进入PyTorch官网查看安装指令,不同的系统和环境对应的安装指令不同,官网会自动给出最佳的安装指令,如下图所示:
在这里插入图片描述
我这里官网给出的最佳安装指令如下:

conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch

复制这个安装指令备用。

STEP2:为PyTorch单独创建conda环境

使用STEP1中的指令安装PyTorch之前,需要先创建一个单独的conda环境,用于匹配对应的PyTorch版本。这一步不是必须的,但可以很方便的为PyTorch创建一个干净且独立的Python环境。这里使用比较稳定的3.6版本的Python解释器,创建代码如下:

conda create -n pytorch1110 python=3.6

我这里安装的是PyTorchan1.11.0稳定版,因此创建的conda环境命名pytorch1110,并指定了Python版本为3.6。安装结果如下,期间输入y确定安装一些必要的包。
在这里插入图片描述

STEP3:进入STEP2中创建的conda环境

输入以下命令即可进入对应环境:

conda activate pytorch1110

STEP4:输入STEP1中的安装指令安装PyTorch

在已经进入conda环境的终端中运行STEP1中的安装指令,如下:
在这里插入图片描述
因为网络原因,安装过程可能出错,如下:
在这里插入图片描述
出现以上问题,我们只需要再次运行刚刚的安装指令即可,安装成功结果如下:

在这里插入图片描述
至此,恭喜你已经完成了Ubuntu中PyTorch的安装,如果需要使用Jupyter Notebook,则需要完成STEP5。

STEP5:安装Jupyter Notebook需要的环境包

在刚刚安装PyTorch的conda环境中要使用Jupyter notebook或者Jupyter Lab需要单独安装,安装指令如下:

conda install nb_conda -y

STEP6:查看cuda是否可用

在这里插入图片描述

运行完成指令就可以愉快的在交互式的Jypyter Notebook中测试自己的深度学习网络了。

收集整理和创作不易, 若有帮助🉑, 请帮忙点赞👍➕收藏❤️, 谢谢!✨✨🚀🚀

### 如何在Ubuntu上逐步安装Pytorch 要在Ubuntu系统上成功安装Pytorch,可以遵循以下方法来确保环境配置得当并满足依赖项需求。以下是详细的说明: #### 创建Conda虚拟环境 为了隔离Python环境并管理包版本,建议使用Anaconda或Miniconda创建一个新的虚拟环境。这有助于防止不同项目之间的冲突。 ```bash conda create -n pytorch_env python=3.8 conda activate pytorch_env ``` 此命令会建立名为`pytorch_env`的新环境,并设置Python版本为3.8[^1]。 #### 安装支持CUDA 11.3的PyTorch 如果目标硬件具备NVIDIA GPU且驱动程序已正确安装,则可以选择带有CUDA加速功能的PyTorch版本。通过官方推荐的方式执行如下pip指令完成安装过程。 ```bash pip install torch==1.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html ``` 上述命令指定下载适用于CUDA 11.3平台优化过的特定版次PyTorch库文件。 #### 验证PyTorch安装情况 确认PyTorch已经正常加载并且能够识别到GPU设备(如果有)。运行下面的小测试脚本可以帮助验证这一点: ```python import torch print(torch.__version__) print(torch.cuda.is_available()) ``` 理想情况下,输出应该显示当前使用的PyTorch版本号以及True表示存在可用的CUDA资源。 #### 可选扩展:MONAI框架集成 对于医学影像处理领域内的开发者来说,可能还会感兴趣于进一步探索MONAI开源工具箱的功能特性。按照指示即可轻松附加这些增强组件至现有环境中去。 ```bash BUILD_MONAI=1 pip install --no-build-isolation git+https://github.com/Project-MONAI/MONAI#egg=monai ``` 这条语句从GitHub仓库克隆最新源码构建MONAI软件包的同时也拉取了必要的关联模块。 ---
评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值