【计算题】(六)微分方程和无穷级数

微分方程

1. 微分算子法快速求特解

f ( x ) = e k x f(x)=e^{kx} f(x)=ekx — 见 D D D k k k

y ′ ′ − 4 y ′ + 3 y = 2 e 2 x y^{''}-4y^{'}+3y=2e^{2x} y4y+3y=2e2x 特解

解: y ∗ = 1 D 2 − 4 D + 3 2 e 2 x = − 2 e 2 x y^{*}=\frac{1}{D^{2}-4D+3}2e^{2x} =-2e^{2x} y=D24D+312e2x=2e2x

y ′ ′ + 2 y ′ − 3 y = e − 3 x y^{''}+2y^{'}-3y=e^{-3x} y+2y3y=e3x 特解

解: y ∗ = 1 D 2 + 2 D − 3 e − 3 x = x 1 2 D + 2 e − 3 x = − 1 4 x e − 3 x y^{*}=\frac{1}{D^{2}+2D-3}e^{-3x} =x\frac{1}{2D+2}e^{-3x} =-\frac{1}{4}xe^{-3x} y=D2+2D31e3x=x2D+21e3x=41xe3x

f ( x ) = sin ⁡ α x / cos ⁡ α x f(x)=\sin \alpha x / \cos \alpha x f(x)=sinαx/cosαx — 见 D 2 D^2 D2 − a 2 -a^{2} a2

y ′ ′ − y = sin ⁡ x y^{''}-y=\sin x yy=sinx 特解

解: y ∗ = 1 D 2 − 1 sin ⁡ x = − 1 2 sin ⁡ x y^{*}=\frac{1}{D^{2}-1}\sin x =-\frac{1}{2} \sin x y=D211sinx=21sinx

y ′ ′ + 4 y = cos ⁡ 2 x y^{''}+4y=\cos 2x y+4y=cos2x 特解

解: y ∗ = 1 D 2 + 4 cos ⁡ 2 x = x 1 2 D cos ⁡ 2 x = 1 4 x sin ⁡ 2 x y^{*}=\frac{1}{D^{2}+4}\cos 2x =x\frac{1}{2D}\cos 2x =\frac{1}{4}x\sin 2x y=D2+41cos2x=x2D1cos2x=41xsin2x

*求 y ′ ′ − 6 y ′ + 9 y = cos ⁡ x y^{''}-6y^{'}+9y=\cos x y6y+9y=cosx 特解

解: y ∗ = 1 D 2 − 6 D + 9 cos ⁡ x = 1 8 − 6 D cos ⁡ x = 8 + 6 D 64 − 36 D 2 cos ⁡ x = 1 100 ( 8 + 6 D ) cos ⁡ x y^{*}=\frac{1}{D^{2}-6D+9}\cos x =\frac{1}{8-6D}\cos x =\frac{8+6D}{64-36D^{2}}\cos x =\frac{1}{100}(8+6D)\cos x y=D26D+91cosx=86D1cosx=6436D28+6Dcosx=1001(8+6D)cosx

f ( x ) = P n ( x ) f(x)=P_{n}(x) f(x)=Pn(x) 1 F ( D ) \frac{1}{F(D)} F(D)1 凑无穷级数代换

y ′ ′ + y = − 2 x y^{''}+y=-2x y+y=2x 特解

解: y ∗ = 1 D 2 + 1 ( − 2 x ) = 1 1 − ( − D 2 ) ( − 2 x ) = ( 1 − D 2 ) ( − 2 x ) = − 2 x y^{*}=\frac{1}{D^{2}+1}(-2x) =\frac{1}{1-(-D^2)}(-2x) =(1-D^2)(-2x) =-2x y=D2+11(2x)=1(D2)1(2x)=(1D2)(2x)=2x

*求 y ′ ′ + y = x 2 y^{''}+y=x^2 y+y=x2 特解

解: y ∗ = 1 D 2 + D x 2 = 1 D 1 D + 1 x 2 = 1 D 1 1 − ( − D ) x 2 = 1 D ( 1 − D + D 2 ) x 2 y^{*}=\frac{1}{D^{2}+D}x^{2} =\frac{1}{D}\frac{1}{D+1}x^{2} =\frac{1}{D}\frac{1}{1-(-D)}x^{2} =\frac{1}{D}(1-D+D^2)x^{2} y=D2+D1x2=D1D+11x2=D11(D)1x2=D1(1D+D2)x2

*求 y ′ ′ − 2 y ′ + 2 y = x 2 y^{''}-2y^{'}+2y=x^2 y2y+2y=x2 特解

解: y ∗ = 1 D 2 − 2 D + 2 x 2 = 1 2 D 2 − 2 D 2 + 1 x 2 = ( 1 2 − D 2 − 2 D 4 + ( D 2 − 2 D ) 2 8 ) x 2 y^{*}=\frac{1}{D^{2}-2D+2}x^2 =\frac{\frac{1}{2}}{\frac{D^{2}-2D}{2}+1}x^2 =(\frac{1}{2}-\frac{D^{2}-2D}{4}+\frac{ (D^{2}-2D)^{2} }{8})x^{2} y=D22D+21x2=2D22D+121x2=(214D22D+8(D22D)2)x2

f ( x ) = e k x v ( x ) f(x)=e^{kx}v(x) f(x)=ekxv(x) — 见 D D D D + k D+k D+k 换位

y ′ ′ + y ′ − 2 y = ( 6 x + 2 ) e x y^{''}+y^{'}-2y=(6x+2)e^{x} y+y2y=(6x+2)ex 特解

解: y ∗ = 1 D 2 + D − 2 ( 6 x + 2 ) e x = 1 ( D − 1 ) ( D + 2 ) ( 6 x + 2 ) e x = e x 1 D ( D + 3 ) ( 6 x + 2 ) = e x 1 D 1 D + 3 ( 6 x + 2 ) y^{*}=\frac{1}{D^{2}+D-2}(6x+2)e^{x} =\frac{1}{(D-1)(D+2)}(6x+2)e^{x} =e^{x}\frac{1}{D(D+3)}(6x+2) =e^{x}\frac{1}{D}\frac{1}{D+3}(6x+2) y=D2+D21(6x+2)ex=(D1)(D+2)1(6x+2)ex=exD(D+3)1(6x+2)=exD1D+31(6x+2)

y ∗ = e x 1 D ( 1 3 − 1 9 D ) ( 6 x + 2 ) = e x 1 D ( 2 x ) = e x x 2 y^{*}=e^{x}\frac{1}{D}(\frac{1}{3}-\frac{1}{9}D)(6x+2) =e^{x}\frac{1}{D}(2x) =e^{x}x^{2} y=exD1(3191D)(6x+2)=exD1(2x)=exx2

错误做法
y ∗ = e x 1 D ( 1 3 − 1 9 D ) ( 6 x + 2 ) = e x ( 1 3 D − 1 9 ) ( 6 x + 2 ) = e x ( x 2 − 2 3 ) y^{*}=e^{x}\frac{1}{D}(\frac{1}{3}-\frac{1}{9}D)(6x+2) =e^{x}(\frac{1}{3D}-\frac{1}{9})(6x+2) =e^{x}(x^{2}-\frac{2}{3}) y=exD1(3191D)(6x+2)=ex(3D191)(6x+2)=ex(x232)

2. 变量替换化简微分方程

用变量代换 x = cos ⁡ t ( 0 < t < π ) x=\cos t(0<t<\pi) x=cost(0<t<π) 化简微分方程 ( 1 − x 2 ) y ′ ′ − x y ′ + y = 0 (1-x^2)y^{''}-xy^{'}+y=0 (1x2)yxy+y=0,并求微分方程的通解

解: y ′ = d y d x = d y d t ⋅ 1 d x / d t = − 1 sin ⁡ t d y d t y^{'}=\frac{dy}{dx} =\frac{dy}{dt} · \frac{1}{dx/dt} =-\frac{1}{\sin t} \frac{dy}{dt} y=dxdy=dtdydx/dt1=sint1dtdy y ′ ′ = d 2 y d x 2 = 1 d t ( d y d x ) ⋅ 1 d x / d t = ( cos ⁡ t sin ⁡ 2 t d y d t − 1 sin ⁡ t d 2 y d x 2 ) ( − 1 sin ⁡ t ) = 1 sin ⁡ 2 t d 2 y d x 2 − cos ⁡ t sin ⁡ 3 t d y d t y^{''}=\frac{d^{2}y}{dx^{2}} =\frac{1}{dt}(\frac{dy}{dx}) · \frac{1}{dx/dt} = (\frac{\cos t}{\sin^{2}t}\frac{dy}{dt}-\frac{1}{\sin t}\frac{d^{2}y}{dx^{2}})(-\frac{1}{\sin t}) =\frac{1}{\sin^{2}t}\frac{d^{2}y}{dx^{2}}-\frac{\cos t}{\sin^{3}t}\frac{dy}{dt} y=dx2d2y=dt1(dxdy)dx/dt1=(sin2tcostdtdysint1dx2d2y)(sint1)=sin2t1dx2d2ysin3tcostdtdy

y ′ , y ′ ′ y^{'}, y^{''} y,y 代入原方程,得 d 2 y d t 2 + y = 0 \frac{d^{2}y}{dt^{2}}+y=0 dt2d2y+y=0

特征方程是 λ 2 + 1 = 0 \lambda^{2}+1=0 λ2+1=0,解得 λ = ± i \lambda = ±i λ=±i,于是此方程的通解为 y = C 1 cos ⁡ t + C 2 sin ⁡ t y=C_{1}\cos t + C_{2}\sin t y=C1cost+C2sint

从而原方程的通解为 y = C 1 x + C 2 1 − x 2 y=C_{1}x+C_{2}\sqrt{1-x^{2}} y=C1x+C21x2

3. 含变限积分方程

f ( x ) f(x) f(x) 连续并满足 f ( t ) = cos ⁡ 2 t + ∫ 0 t f ( s ) sin ⁡ s d s f(t)=\cos 2t + \int_{0}^{t} f(s)\sin sds f(t)=cos2t+0tf(s)sinsds,求 f ( t ) f(t) f(t)

解:因 f ( t ) f(t) f(t) 连续 → \to ∫ 0 t f ( s ) sin ⁡ s d s \int_{0}^{t}f(s)\sin sds 0tf(s)sinsds 可导 → \to f ( t ) f(t) f(t) 可导,因而两边可求导 f ′ ( t ) = − 2 sin ⁡ 2 t + f ( t ) sin ⁡ t , 即 f ′ ( t ) + 2 sin ⁡ 2 t = f ( t ) sin ⁡ t f^{'}(t)=-2\sin 2t+f(t)\sin t,即 f^{'}(t)+2\sin 2t=f(t)\sin t f(t)=2sin2t+f(t)sintf(t)+2sin2t=f(t)sint

一阶线性微分方程 f ( t ) = e − ∫ P ( t ) d t [ C + ∫ Q ( x ) e ∫ P ( t ) d t d t ] = e − cos ⁡ t 4 [ C + ( cos ⁡ t − 1 ) e cos ⁡ t ] f(t) =e^{-\int P(t)dt}[C+\int Q(x)e^{\int P(t)dt}dt] =e^{-\cos t}4[C+(\cos t-1)e^{\cos t}] f(t)=eP(t)dt[C+Q(x)eP(t)dtdt]=ecost4[C+(cost1)ecost]

f ( x ) f(x) f(x) 连续,且满足 ∫ 0 1 f ( t x ) d t = f ( x ) + x sin ⁡ x \int_{0}^{1}f(tx)dt=f(x)+x\sin x 01f(tx)dt=f(x)+xsinx,求 f ( x ) f(x) f(x)

解:令 t x = s tx=s tx=s,则原方程为 1 x ∫ 0 x f ( s ) d s = f ( x ) + x sin ⁡ x ( x ≠ 0 ) , 即 ∫ 0 x f ( s ) d s = x f ( x ) + x 2 sin ⁡ x \frac{1}{x}\int_{0}^{x}f(s)ds=f(x)+x\sin x(x≠0), 即 \int_{0}^{x}f(s)ds=xf(x)+x^{2}\sin x x10xf(s)ds=f(x)+xsinx(x=0)0xf(s)ds=xf(x)+x2sinx

f ( x ) f(x) f(x) 连续 → \to ∫ 0 x f ( s ) d s \int_{0}^{x}f(s)ds 0xf(s)ds 可导 → \to f ( x ) f(x) f(x) 可导,因而两边可求导 f ( x ) = x f ′ ( x ) + f ( x ) + ( x 2 sin ⁡ x ) ′ , 即 x f ′ ( x ) = − 2 x sin ⁡ x − x 2 cos ⁡ x f(x)=xf^{'}(x)+f(x)+(x^{2}\sin x)^{'},即 xf^{'}(x)=-2x\sin x - x^{2}\cos x f(x)=xf(x)+f(x)+(x2sinx)xf(x)=2xsinxx2cosx

x = 0 x=0 x=0 时,则等式恒成立;当 x ≠ 0 x≠0 x=0 时,则 f ′ ( x ) = − 2 sin ⁡ x − x cos ⁡ x f^{'}(x)=-2\sin x - x\cos x f(x)=2sinxxcosx,两端积分 f ( x ) = − x sin ⁡ x + cos ⁡ x + C f(x)=-x\sin x+\cos x+C f(x)=xsinx+cosx+C

f ( x ) = x sin ⁡ x − ∫ 0 x ( x − t ) f ( t ) d t f(x)=x\sin x-\int_{0}^{x} (x-t)f(t)dt f(x)=xsinx0x(xt)f(t)dt,其中 f ( x ) f(x) f(x) 连续,求 f ( x ) f(x) f(x)

解:原方程可改写为 f ( x ) = x sin ⁡ x − x ∫ 0 x f ( t ) d t + ∫ 0 x t f ( t ) d t f(x)=x\sin x-x\int_{0}^{x} f(t) dt + \int_{0}^{x} tf(t) dt f(x)=xsinxx0xf(t)dt+0xtf(t)dt

f ( x ) f(x) f(x) 连续 → \to ∫ 0 x f ( t ) d t , ∫ 0 x t f ( t ) d t \int_{0}^{x} f(t) dt, \int_{0}^{x} tf(t) dt 0xf(t)dt,0xtf(t)dt 可导 → \to f ( x ) f(x) f(x) 可导,两边求导 f ′ ( x ) = x cos ⁡ x + sin ⁡ x − ∫ 0 x f ( t ) d t , f ( 0 ) = 0 f^{'}(x)=x\cos x+\sin x -\int_{0}^{x}f(t)dt,f(0)=0 f(x)=xcosx+sinx0xf(t)dtf(0)=0

两边可再求导 f ′ ′ ( x ) = − x sin ⁡ x + 2 cos ⁡ x − f ( x ) , f ′ ( 0 ) = 0 , f ( 0 ) = 0 f^{''}(x)=-x\sin x+2\cos x - f(x),f^{'}(0)=0,f(0)=0 f(x)=xsinx+2cosxf(x)f(0)=0f(0)=0

f ( t ) f(t) f(t) [ 0 , + ∞ ) [0, +\infin) [0,+) 上连续,且满足方程 f ( t ) = e 4 π t 2 + ∬ x 2 + y 2 ≤ 4 t 2 f ( 1 2 x 2 + y 2 ) d x d y f(t)=e^{4\pi t^{2}} +\iint_{x^{2}+y^{2}≤4t^{2}} f(\frac{1}{2} \sqrt{x^{2}+y^{2} })dxdy f(t)=e4πt2+x2+y24t2f(21x2+y2 )dxdy,求 f ( t ) f(t) f(t)

无穷级数

1. 敛散性判别

常数项级数判别收敛散性的步骤:考察 lim ⁡ u n = 0 \lim u_n = 0 limun=0 是否成立,如果不成立即原级数发散,否则需要进一步判断

判断几何级数 ∑ n = 1 ∞ a q n − 1 \sum_{n=1}^{\infin} aq^{n-1} n=1aqn1 敛散性,其中 a ≠ 0 a≠0 a=0

解:题意可知, u n = a q n − 1 u_{n}=aq^{n-1} un=aqn1 S n = a ( 1 − q n ) 1 − q S_{n}=\frac{a(1-q^{n})}{1-q} Sn=1qa(1qn)
∣ q ∣ < 1 |q|<1 q<1 时, lim ⁡ u n = 0 \lim u_{n}=0 limun=0 lim ⁡ S n = a 1 − q \lim S_{n}=\frac{a}{1-q} limSn=1qa,极限存在,所以原级数收敛
q > 1 q>1 q>1 时, lim ⁡ u n = ∞ \lim u_{n}=\infin limun=,原级数发散
q = 1 q=1 q=1 时, lim ⁡ u n = a ≠ 0 \lim u_{n}=a≠0 limun=a=0,原级数发散
q = 1 q=1 q=1 时, lim ⁡ u n = lim ⁡ ( − 1 ) n − 1 a \lim u_{n}=\lim (-1)^{n-1} a limun=lim(1)n1a,极限不存在,原级数发散
q < − 1 q<-1 q<1 时, lim ⁡ u n = lim ⁡ ( − 1 ) n − 1 a q \lim u_{n} = \lim (-1)^{n-1} aq limun=lim(1)n1aq,极限不存在,原级数发散

正项级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infin} u_n n=1un

  • 一般项含有 n ! n! n! n n n 乘积形式,通常选用比值判别法;
  • 一般项含有 a n a^n an 形式的因子,通常选用根植判别法;
  • 一般项含有 n a n^a na 形式的因子, 1 n \frac{1}{n} n1 采用比较判别法 + 部分和证明,其余采用比较判别法,函数递减采用积分判别法
  • 一般项含有 ln ⁡ ( 1 + 1 n ) , ( 1 + 1 n ) a − 1 \ln(1+\frac{1}{n}), (1+\frac{1}{n})^{a}-1 ln(1+n1),(1+n1)a1 形式的因子,通常选用等价无穷小同敛散性
  • 多项式级数:收敛+收敛=收敛,收敛+发散=发散,发散+发散=等价无穷小或泰勒公式同敛散性

比值法: 判断 ∑ n = 0 ∞ ∣ a ∣ n n ! n n \sum_{n=0}^{\infin} \frac{|a|^{n}n! }{n^{n} } n=0nnann! 敛散性,其中 a a a 为非 0 0 0 常数

解:去掉首项不改变敛散性,即求正项级数 ∑ n = 1 ∞ ∣ a ∣ n n ! n n \sum_{n=1}^{\infin} \frac{|a|^{n}n! }{n^{n} } n=1nnann! 敛散性
lim ⁡ n → ∞ u n + 1 u n = lim ⁡ n → ∞ ∣ a ∣ n + 1 ( n + 1 ) ! ( n + 1 ) n + 1 ⋅ n n ∣ a ∣ n n ! = lim ⁡ n → ∞ ∣ a ∣ ( 1 + 1 n ) n = ∣ a ∣ e \lim_{n \to \infin} \frac{u_{n+1}}{u_{n}} =\lim_{n \to \infin} \frac{|a|^{n+1}(n+1)! }{(n+1)^{n+1} } · \frac{n^{n}} {|a|^{n}n! } =\lim_{n \to \infin} \frac{|a|}{ (1+\frac{1}{n})^{n} } =\frac{|a|}{e} nlimunun+1=nlim(n+1)n+1an+1(n+1)!ann!nn=nlim(1+n1)na=ea ∣ a ∣ < e |a|<e a<e,原级数收敛;若 ∣ a ∣ > e |a|>e a>e,原级数发散;若 ∣ a ∣ = e |a|=e a=e e ( 1 + 1 / n ) < 1 \frac{e}{(1+1/n)}<1 (1+1/n)e<1,原级数发散


根植法:判断 ∑ n = 1 ∞ ( n sin ⁡ 1 n ) n 2 \sum_{n=1}^{\infin} (n\sin \frac{1}{n})^{n^2} n=1(nsinn1)n2 敛散性

解:记 u n = ( n sin ⁡ 1 n ) n 3 u_n=(n\sin \frac{1}{n})^{n^3} un=(nsinn1)n3 u n n = ( n sin ⁡ 1 n ) n 2 \sqrt[n]{u_n}=(n\sin \frac{1}{n})^{n^2} nun =(nsinn1)n2 lim ⁡ n → ∞ u n n = lim ⁡ n → ∞ ( n sin ⁡ 1 n ) n 2 = e lim ⁡ n → ∞ n 2 ( n sin ⁡ 1 n − 1 ) = e − 1 6 , 原 级 数 收 敛 \lim_{n \to \infin} \sqrt[n]{u_n} = \lim_{n \to \infin} (n\sin \frac{1}{n})^{n^2} =e^{\lim_{n \to \infin} n^{2}(n\sin \frac{1}{n}-1)} =e^{-\frac{1}{6}},原级数收敛 nlimnun =nlim(nsinn1)n2=elimnn2(nsinn11)=e61


判断 ∑ n = 1 ∞ 1 n p \sum_{n=1}^{\infin} \frac{1}{n^{p} } n=1np1 敛散性

比较判别法 + 部分和:若 p = 1 p=1 p=1 时, 1 n > ln ⁡ ( 1 + 1 n ) = ln ⁡ ( n + 1 n ) = ln ⁡ ( n + 1 ) − ln ⁡ n \frac{1}{n}>\ln (1+\frac{1}{n}) =\ln (\frac{n+1}{n}) =\ln (n+1) - \ln n n1>ln(1+n1)=ln(nn+1)=ln(n+1)lnn

部分和 S n = ( ln ⁡ 2 − ln ⁡ 1 ) + ( ln ⁡ 3 − ln ⁡ 2 ) + . . . + [ ln ⁡ ( n + 1 ) − ln ⁡ n ] = ln ⁡ ( n + 1 ) S_n=(\ln 2 - \ln 1)+(\ln 3 - \ln 2)+ ... +[\ln (n+1) - \ln n] =\ln (n+1) Sn=(ln2ln1)+(ln3ln2)+...+[ln(n+1)lnn]=ln(n+1)

lim ⁡ S n = lim ⁡ ln ⁡ ( n + 1 ) = + ∞ \lim S_{n} = \lim \ln (n+1) = +\infin limSn=limln(n+1)=+,故 ∑ n = 1 ∞ ln ⁡ ( 1 + 1 n ) \sum_{n=1}^{\infin} \ln (1+\frac{1}{n}) n=1ln(1+n1) 发散, ∑ n = 1 ∞ 1 n \sum_{n=1}^{\infin} \frac{1}{n} n=1n1 发散

比较判别法:若 p < 1 p<1 p<1 时, 1 n p > 1 n \frac{1}{n^{p} }>\frac{1}{n} np1>n1,所以 ∑ n = 1 ∞ 1 n p \sum_{n=1}^{\infin} \frac{1}{n^{p} } n=1np1 发散

积分判别法:若 p > 1 p>1 p>1 时, ∑ n = 1 ∞ 1 n p = 1 + ∫ 1 + ∞ 1 x p d x = 1 + 1 1 − p 1 x p − 1 ∣ 1 + ∞ = 2 − p 1 − p , 收 敛 \sum_{n=1}^{\infin} \frac{1}{n^{p} } =1+\int_{1}^{+\infin}\frac{1}{x^{p} }dx =1+\frac{1}{1-p} \frac{1}{x^{p-1} } |_{1}^{+\infin} =\frac{2-p}{1-p},收敛 n=1np1=1+1+xp1dx=1+1p1xp111+=1p2p


等价同敛散性

判断 ∑ n = 1 ln ⁡ ( 1 + 1 n ) \sum_{n=1} \ln(1+\frac{1}{n}) n=1ln(1+n1) 敛散性

lim ⁡ n → ∞ ln ⁡ ( 1 + 1 n ) 1 n = lim ⁡ n → ∞ 1 1 + 1 n = 1 , ln ⁡ ( 1 + 1 n ) 等 价 于 1 n , 发 散 \lim_{n \to \infin} \frac{\ln(1+\frac{1}{n}) }{\frac{1}{n} } =\lim_{n \to \infin} \frac{1}{1+\frac{1}{n} }=1, \ln(1+\frac{1}{n}) 等价于 \frac{1}{n},发散 nlimn1ln(1+n1)=nlim1+n11=1ln(1+n1)n1

判断 ∑ n = 1 n − n 2 + n 4 \sum_{n=1} \sqrt{n} - \sqrt[4]{n^2+n} n=1n 4n2+n 敛散性

n − n 2 + n 4 = n [ 1 − ( 1 + 1 n ) 1 4 ] = − n [ ( 1 + 1 n ) 1 4 − 1 ] \sqrt{n} - \sqrt[4]{n^2+n} =\sqrt{n}[1-(1+\frac{1}{n})^{\frac{1}{4} }] =-\sqrt{n}[(1+\frac{1}{n})^{\frac{1}{4} } - 1] n 4n2+n =n [1(1+n1)41]=n [(1+n1)411] − n [ ( 1 + 1 n ) 1 4 − 1 ] 等 价 于 − n ⋅ 1 4 n = − 1 4 n , 发 散 -\sqrt{n}[(1+\frac{1}{n})^{\frac{1}{4} } - 1] 等价于 -\sqrt{n} · \frac{1}{4n} = -\frac{1}{4\sqrt{n} },发散 n [(1+n1)411]n 4n1=4n 1


泰勒公式同敛散性:判断 ∑ n = 1 ∞ ( 1 n − ln ⁡ n + 1 n ) \sum_{n=1}^{\infin} (\frac{1}{n} - \ln \frac{n+1}{n}) n=1(n1lnnn+1) 敛散性

  • 任意项级数判定 ∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infin} |u_n| n=1un 是否收敛,若 ∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infin} |u_n| n=1un 收敛,则 ∑ n = 1 ∞ u n \sum_{n=1}^{\infin} u_n n=1un 绝对收敛,否则考察是否为交错级数
  • 交错级数莱布尼茨判别法判定: lim ⁡ u n = 0 \lim u_{n}=0 limun=0 u n + 1 > u n u_{n+1}>u_{n} un+1>un,则 ∑ n = 1 ∞ u n \sum_{n=1}^{\infin} u_n n=1un 条件收敛,否则考察其他方法
  • 非交错级数或不满足莱布尼茨判别法: { S 2 n } \{ S_{2n} \} {S2n} { S 2 n + 1 } \{ S_{2n+1} \} {S2n+1} 敛散性:收敛+发散=发散,发散+发散=等价无穷小或泰勒公式同敛散性

判定 1 − 1 2 a + 1 3 − 1 4 a + 1 5 − 1 6 a . . . . 1-\frac{1}{2^{a} }+\frac{1}{3}-\frac{1}{4^{a} }+\frac{1}{5}-\frac{1}{6^{a} }.... 12a1+314a1+516a1.... 敛散性

莱布尼茨判别法:当 a = 1 a=1 a=1 时,级数 ∑ n = 1 ∞ ( − 1 ) n − 1 ⋅ 1 n \sum_{n=1}^{\infin} (-1)^{n-1} · \frac{1}{n} n=1(1)n1n1,交错级数使用莱布尼茨判别法: 1 n > 1 n + 1 即 u n > u n + 1 且 lim ⁡ u n = 0 , 收 敛 \frac{1}{n}>\frac{1}{n+1} 即 u_{n}>u_{n+1} 且 \lim u_{n}=0,收敛 n1>n+11un>un+1limun=0

{ S 2 n } \{ S_{2n} \} {S2n} { S 2 n + 1 } \{ S_{2n+1} \} {S2n+1}

发散+收敛=发散:当 a > 1 a>1 a>1 时,考虑级数 u 2 n − 1 = 1 2 n − 1 u_{2n-1} = \frac{1}{2n-1} u2n1=2n11 u 2 n = 1 ( 2 n ) a u_{2n}=\frac{1}{(2n)^{a}} u2n=(2n)a1

u 2 n − 1 = 1 2 n − 1 发 散 , u 2 n = 1 ( 2 n ) a 收 敛 , 发 散 + 收 敛 = 发 散 u_{2n-1} = \frac{1}{2n-1} 发散,u_{2n}=\frac{1}{(2n)^{a}} 收敛,发散+收敛=发散 u2n1=2n11u2n=(2n)a1+=

发散+发散=等价:若 0 < a < 1 0<a<1 0<a<1 时, 1 2 n − 1 − 1 ( 2 n ) a = ( 2 n ) a − ( 2 n − 1 ) ( 2 n − 1 ) ( 2 n ) a 等 价 于 1 ( 2 n ) a , 发 散 \frac{1}{2n-1}-\frac{1}{(2n)^{a} } =\frac{(2n)^{a}-(2n-1) }{(2n-1)(2n)^{a} } 等价于 \frac{1}{(2n)^{a} },发散 2n11(2n)a1=(2n1)(2n)a(2n)a(2n1)(2n)a1

2. 收敛域

具体级数:绝对值 ∑ ∣ u n ( x ) ∣ \sum |u_{n}(x)| un(x) 成为正项级数,比值或根值判别法求收敛区间,讨论端点敛散性

∑ n = 1 ∞ ( − 1 ) n − 1 ( x − 1 ) n n ( n − 3 n \sum_{n=1}^{\infin} (-1)^{n-1} \frac{(x-1)^{n} }{n(n-3^{n} } n=1(1)n1n(n3n(x1)n 收敛域

解: ∣ u n ( x ) ∣ = ∣ ∑ n = 1 ∞ ( − 1 ) n − 1 ( x − 1 ) n n ( n − 3 n ) = ∣ ( x − 1 ) n ∣ n ( 3 n − n ) |u_{n}(x)| =|\sum_{n=1}^{\infin} (-1)^{n-1} \frac{(x-1)^{n} }{n(n-3^{n}) } =\frac{|(x-1)^{n}|}{n(3^{n}-n)} un(x)=n=1(1)n1n(n3n)(x1)n=n(3nn)(x1)n lim ⁡ n → ∞ ∣ u n ( x ) ∣ n = lim ⁡ n → ∞ ∣ x − 1 ∣ n n ⋅ 3 n − n n = ∣ x − 1 ∣ 3 < 1 , 收 敛 区 间 ( − 2 , 4 ) \lim_{n \to \infin} \sqrt[n]{ |u_{n}(x)| } =\lim_{n \to \infin} \frac{|x-1|}{\sqrt[n]{n} · \sqrt[n]{3^{n}-n} } =\frac{|x-1|}{3}<1,收敛区间 (-2,4) nlimnun(x) =nlimnn n3nn x1=3x1<1(2,4)

x = − 2 x=-2 x=2 时,原级数变为 ∑ n = 1 ∞ ( − 1 ) n − 1 ( − 1 ) n 3 n n ( n − 3 n ) = ∑ n = 1 ∞ − 3 n n ( n − 3 n ) = ∑ n = 1 ∞ n − 3 n − n n ( n − 3 n ) = ∑ n = 1 ∞ 1 n − ∑ n = 1 ∞ 1 n − 3 n , 发 + 收 = 发 \sum_{n=1}^{\infin} (-1)^{n-1} \frac{(-1)^{n}3^{n} }{n(n-3^{n}) } =\sum_{n=1}^{\infin} \frac{-3^{n} }{n(n-3^{n}) } =\sum_{n=1}^{\infin} \frac{n-3^{n}-n }{n(n-3^{n}) } =\sum_{n=1}^{\infin} \frac{1}{n} - \sum_{n=1}^{\infin}\frac{1}{n-3^{n}},发+收=发 n=1(1)n1n(n3n)(1)n3n=n=1n(n3n)3n=n=1n(n3n)n3nn=n=1n1n=1n3n1+=

x = 4 x=4 x=4 时,原级数变为 ∑ n = 1 ∞ ( − 1 ) n − 1 3 n n ( n − 3 n ) = ∑ n = 1 ∞ ( − 1 ) n n − 3 n − n n ( n − 3 n ) = ∑ n = 1 ∞ ( − 1 ) n 1 n − ∑ n = 1 ∞ ( − 1 ) n 1 n − 3 n , 收 + 收 = 收 \sum_{n=1}^{\infin} (-1)^{n-1} \frac{3^{n} }{n(n-3^{n}) } =\sum_{n=1}^{\infin}(-1)^{n} \frac{n-3^{n}-n}{n(n-3^{n})} =\sum_{n=1}^{\infin}(-1)^{n} \frac{1}{n} - \sum_{n=1}^{\infin} (-1)^{n} \frac{1}{n-3^{n}},收+收=收 n=1(1)n1n(n3n)3n=n=1(1)nn(n3n)n3nn=n=1(1)nn1n=1(1)nn3n1+=

抽象级数

已知 ∑ n = 1 ∞ a n ( x − x 0 ) n \sum_{n=1}^{\infin} a_{n} (x-x_{0})^{n} n=1an(xx0)n 在某点 x 1 ( x 1 ≠ x 0 ) x_{1}(x_{1}≠x_{0}) x1(x1=x0) 敛散性,求收敛半径

  • x 1 x_{1} x1 处收敛,则收敛半径 R ≥ ∣ x 1 − x 0 ∣ R≥|x_{1}-x_{0}| Rx1x0
  • x 1 x_{1} x1 处发散,则收敛半径 R ≤ ∣ x 1 − x 0 ∣ R≤|x_{1}-x_{0}| Rx1x0
  • x 1 x_{1} x1 处条件收敛,则收敛半径 R = ∣ x 1 − x 0 ∣ R=|x_{1}-x_{0}| R=x1x0

已知 ∑ n = 1 ∞ a n ( x − x 1 ) n \sum_{n=1}^{\infin} a_{n} (x-x_{1})^{n} n=1an(xx1)n 的敛散性信息,讨论 ∑ n = 1 ∞ b n ( x − x 2 ) m \sum_{n=1}^{\infin} b_{n} (x-x_{2})^{m} n=1bn(xx2)m 敛散性

  • ( x − x 1 ) n (x-x_{1})^{n} (xx1)n ( x − x 2 ) m (x-x_{2})^{m} (xx2)m 转化一般通过平移收敛区间、提出或乘以因式 ( x − x 0 ) (x-x_{0}) (xx0),收敛半径不变
  • a n a_{n} an b n b_{n} bn 转化一般通过级数逐项求导或逐项积分完成,收敛半径不变,收敛域可能变化

∑ n = 1 ∞ a n ( x + 1 ) n \sum_{n=1}^{\infin} a_{n} (x+1)^{n} n=1an(x+1)n x = 1 x=1 x=1 处条件收敛,求幂级数 ∑ n = 1 ∞ n a n ( x − 1 ) n \sum_{n=1}^{\infin} na_{n} (x-1)^{n} n=1nan(x1)n x = 2 x=2 x=2 处敛散性

解:
∑ n = 1 ∞ a n ( x + 1 ) n \sum_{n=1}^{\infin} a_{n} (x+1)^{n} n=1an(x+1)n x = 1 x=1 x=1 处条件收敛,收敛半径 R = ∣ x 1 − x 0 ∣ = ∣ 1 − ( − 1 ) ∣ = 2 R=|x_{1}-x_{0}|=|1-(-1)|=2 R=x1x0=1(1)=2,收敛区间 ( − 3 , 1 ) (-3,1) (3,1)

( x + 1 ) n (x+1)^{n} (x+1)n ( x − 1 ) n (x-1)^{n} (x1)n 转化,可将收敛区间平移到 ( − 1 , 3 ) (-1,3) (1,3),得 ∑ n = 1 ∞ a n ( x − 1 ) n \sum_{n=1}^{\infin} a_{n} (x-1)^{n} n=1an(x1)n,收敛半径不变

∑ n = 1 ∞ a n ( x − 1 ) n \sum_{n=1}^{\infin} a_{n} (x-1)^{n} n=1an(x1)n 逐项求导,得 ∑ n = 1 ∞ n a n ( x − 1 ) n − 1 \sum_{n=1}^{\infin} na_{n} (x-1)^{n-1} n=1nan(x1)n1,再逐项乘以 ( x − 1 ) (x-1) (x1) ∑ n = 1 ∞ n a n ( x − 1 ) n \sum_{n=1}^{\infin} na_{n} (x-1)^{n} n=1nan(x1)n

∑ n = 1 ∞ a n ( x − 1 ) n \sum_{n=1}^{\infin} a_{n} (x-1)^{n} n=1an(x1)n 收敛区间为 ( − 1 , 3 ) (-1,3) (1,3) x = 2 x=2 x=2 在收敛区间内部,故在该点处级数绝对收敛

3. 求和函数

求和函数突破口:

  • ( a n + b ) c (an+b)^{c} (an+b)c 在分子上时,先积后导
  • ( a n + b ) c (an+b)^{c} (an+b)c 在分母上时,先导后积 S ( x ) = ∫ a x S ′ ( t ) d t + S ( a ) S(x)=\int_{a}^{x} S^{'}(t)dt+S(a) S(x)=axS(t)dt+S(a)
  • 求级数 ∑ n = 1 ∞ n x n \sum_{n=1}^{\infin} nx^{n} n=1nxn 的和函数
    解: ∑ n = 1 ∞ n x n \sum_{n=1}^{\infin} nx^{n} n=1nxn= x ∑ n = 1 ∞ n x n − 1 x\sum_{n=1}^{\infin} nx^{n-1} xn=1nxn1,设 S ( x ) = ∑ n = 1 ∞ n x n − 1 S(x)=\sum_{n=1}^{\infin} nx^{n-1} S(x)=n=1nxn1,则原级数 ∑ n = 1 ∞ n x n \sum_{n=1}^{\infin} nx^{n} n=1nxn= x S ( x ) xS(x) xS(x)
    逐项积分, ∫ 0 x S ( t ) d t = ∑ n = 1 ∞ ∫ 0 x n t n − 1 d t = ∑ n = 1 ∞ x n = x 1 − x , ∣ x ∣ < 1 \int_{0}^{x} S(t)dt =\sum_{n=1}^{\infin} \int_{0}^{x} nt^{n-1}dt =\sum_{n=1}^{\infin} x^{n} =\frac{x}{1-x},|x|<1 0xS(t)dt=n=10xntn1dt=n=1xn=1xxx<1
    逐项求导, [ ∫ 0 x S ( t ) d t ] ′ = ( x 1 − x ) ′ = 1 ( 1 − x ) 2 [\int_{0}^{x}S(t)dt]^{'} =(\frac{x}{1-x})^{'} =\frac{1}{(1-x)^{2}} [0xS(t)dt]=(1xx)=(1x)21 所以 ∑ n = 1 ∞ n x n = x ( 1 − x ) 2 , ∣ x ∣ < 1 \sum_{n=1}^{\infin} nx^{n}=\frac{x}{(1-x)^{2} }, |x|<1 n=1nxn=(1x)2xx<1

  • 求级数 ∑ n = 1 ∞ x n n \sum_{n=1}^{\infin} \frac{x^{n} }{n} n=1nxn 的和函数
    解:设 S ( x ) = ∑ n = 1 ∞ x n n S(x)=\sum_{n=1}^{\infin} \frac{x^{n} }{n} S(x)=n=1nxn,逐项求导可得 S ′ ( x ) = ∑ n = 1 ∞ ( x n n ) ′ = ∑ n = 1 ∞ x n − 1 = 1 1 − x , ∣ x ∣ < 1 S^{'}(x) =\sum_{n=1}^{\infin} (\frac{x^{n} }{n})^{'} =\sum_{n=1}^{\infin} x^{n-1} =\frac{1}{1-x},|x|<1 S(x)=n=1(nxn)=n=1xn1=1x1x<1 逐项积分 S ( x ) = ∫ 0 x S ′ ( t ) d t + S ( 0 ) = ∫ 0 x d t 1 − t + 0 = − ln ⁡ ( 1 − x ) , x ∈ [ − 1 , 1 ) S(x)=\int_{0}^{x} S^{'}(t)dt+S(0) =\int_{0}^{x} \frac{dt}{1-t}+0 =-\ln (1-x),x \in [-1,1) S(x)=0xS(t)dt+S(0)=0x1tdt+0=ln(1x)x[1,1)

4. 展开式

间接法:利用已知幂级数等式,通过分解法、逐项求导或逐项积分求

  • f ( x ) = 1 x 2 − 5 x + 6 f(x)=\frac{1}{x^{2}-5x+6} f(x)=x25x+61 展开为 x + 5 x+5 x+5 的幂级数
    解: f ( x ) = 1 ( x − 2 ) ( x − 3 ) = 1 x − 3 − 1 x − 2 = 1 x − + 5 − 8 − 1 x + 5 − 7 = − 1 8 ⋅ 1 1 − x + 5 8 f(x)=\frac{1}{(x-2)(x-3)} =\frac{1}{x-3}-\frac{1}{x-2} =\frac{1}{x-+5-8}-\frac{1}{x+5-7} \\ =-\frac{1}{8} · \frac{1}{1-\frac{x+5}{8}} f(x)=(x2)(x3)1=x31x21=x+581x+571=8118x+51

  • f ( x ) = ln ⁡ ( 2 − 2 x 2 − 4 x 4 ) f(x)=\ln (2-2x^{2}-4x^{4}) f(x)=ln(22x24x4) 展开为 x x x 的幂级数
    解:分解法 f ( x ) = ln ⁡ [ 2 ( 1 + x 2 ) ( 1 − 2 x 2 ] = ln ⁡ 2 + ln ⁡ ( 1 + x 2 ) + ln ⁡ ( 1 − 2 x 2 ) f(x)=\ln [2(1+x^{2})(1-2x^{2}] =\ln 2 + \ln(1+x^{2})+\ln (1-2x^{2}) f(x)=ln[2(1+x2)(12x2]=ln2+ln(1+x2)+ln(12x2) 逐项求导 f ′ ( x ) = 2 x 1 + x 2 − 4 x 1 − 2 x 2 = 2 x ∑ n = 0 ∞ ( − 1 ) n x 2 n − 4 x ∑ n = 0 ∞ x 2 n f^{'}(x)=\frac{2x}{1+x^{2}} - \frac{4x}{1-2x^{2}} =2x\sum_{n=0}^{\infin} (-1)^{n} x^{2n} - 4x \sum_{n=0}^{\infin} x^{2n} f(x)=1+x22x12x24x=2xn=0(1)nx2n4xn=0x2n 逐项积分 f ( x ) = ∫ 0 x f ′ ( t ) d t + f ( 0 ) = ∑ 1 ∞ [ ( − 1 ) n − 1 − 2 n n + 1 ] x 2 n + ln ⁡ 2 , ∣ x ∣ < 1 2 f(x)=\int_{0}^{x}f^{'}(t)dt+f(0) =\sum_{1}^{\infin}[\frac{(-1)^{n-1} - 2^{n} }{n+1}]x^{2n}+\ln 2,|x|<\frac{1}{\sqrt{2} } f(x)=0xf(t)dt+f(0)=1[n+1(1)n12n]x2n+ln2x<2 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值