# 概述

## layer_base分析

layer_base是最底层的基类，它包含了层中需要的数据，先看一下数据类型

protected:
cnn_size_t in_size_;//输入大小
cnn_size_t out_size_;//输出大小
bool parallelize_;//是否并行

layer_base* next_;//layer的前后关系由next和prev标明，都是裸指针
layer_base* prev_;
vec_t a_[CNN_TASK_SIZE];          // w * x，a_用来存放中间计算结果(w * x)，最终结果f(w * x)存放在output_
vec_t output_[CNN_TASK_SIZE];     // last output of current layer, set by fprop
vec_t prev_delta_[CNN_TASK_SIZE]; // last delta of previous layer, set by bprop
vec_t W_;          // weight vector，存储weight权重系数
vec_t b_;          // bias vector，存储bias

/** contribution to derivative of loss function with respect to weights of this layer,
indexed by worker / thread */

/** contribution to derivative of loss function with respect to bias terms of this layer,
indexed by worker / thread */

vec_t Whessian_; // diagonal terms of hessian matrix，weight对应的hessian矩阵
vec_t bhessian_;//bias对应的hessian矩阵
vec_t prev_delta2_; // d^2E/da^2,
std::shared_ptr<weight_init::function> weight_init_;//weight初始化类，weight_init::function是个类
std::shared_ptr<weight_init::function> bias_init_;//bias初始化

CNN_TASK_SIZE是个宏定义的常数，用来并行计算的；vec_t是容器

typedef std::vector<float_t, aligned_allocator<float_t, 64>> vec_t;//以64bit对齐的，存放float_t类型的容器

weight_init_bias_init_是函数指针，用来初始化权重和偏置的。layer_base中很多纯虚函数，都是留给派生类实现，不同的派生类有不同实现。比较典型的有

virtual const vec_t& forward_propagation(const vec_t& in, size_t worker_index) = 0;
virtual const vec_t& back_propagation(const vec_t& current_delta, size_t worker_index) = 0;
virtual const vec_t& back_propagation_2nd(const vec_t& current_delta2) = 0;

    void merge(cnn_size_t worker_size, cnn_size_t batch_size) {//不同线程计算的梯度进行合并
for (cnn_size_t i = 1; i < worker_size; i++)//注意这里是从1开始计算，结果保存到0
vectorize::reduce<float_t>(&dW_[i][0],
static_cast<cnn_size_t>(dW_[i].size()), &dW_[0][0]);
for (cnn_size_t i = 1; i < worker_size; i++)
vectorize::reduce<float_t>(&db_[i][0],
static_cast<cnn_size_t>(db_[i].size()), &db_[0][0]);
//合并后的梯度，除以batch_size进行归一化
std::transform(dW_[0].begin(), dW_[0].end(), dW_[0].begin(), [&](float_t x) { return x / batch_size; });
std::transform(db_[0].begin(), db_[0].end(), db_[0].begin(), [&](float_t x) { return x / batch_size; });

CNN_LOG_VECTOR(dW_[0], "[dW-merged]");
CNN_LOG_VECTOR(db_[0], "[db-merged]");
}

## layer分析

layer派生子layer_base，这个派生只是添加了激活函数。

template<typename Activation>
class layer : public layer_base {//layer_base变为layer，多了激活函数Activation
public:
layer(cnn_size_t in_dim, cnn_size_t out_dim, size_t weight_dim, size_t bias_dim)
: layer_base(in_dim, out_dim, weight_dim, bias_dim) {}

activation::function& activation_function() override { return h_; }
protected:
Activation h_;
};

#### C++卷积神经网络实例：tiny_cnn代码详解（7）——fully_connected_layer层结构类分析

2016-03-16 08:56:07

#### Tensorflow CNN(两层卷积+全连接+softmax)

2018-03-24 23:57:37

#### C++卷积神经网络实例：tiny_cnn代码详解（10）——layer_base和layer类结构分析

2016-03-23 08:41:15

#### TensorFlow搭建CNN卷积神经网络

2017-08-19 00:40:20

#### TensorFlow 中的卷积网络（cnn）

2017-07-11 19:08:32

#### 吴恩达 深度学习 编程作业（4-1）- Convolutional Neural Networks & CNN Application

2017-11-13 21:50:58

#### 【深度学习】卷积神经网络（CNN）

2018-01-16 10:32:47

#### TensorFlow -- 实现CNN卷积神经网络

2017-12-21 23:35:32

#### TensorFlow：Chap6笔记总结（卷积神经网络CNN）

2017-12-10 11:41:40

#### tiny_cnn源码阅读(1)-编译运行源码

2016-05-29 13:31:43