# 快速幂 jobdu-1447

## 问题

Xinlv wrote some sequences on the paper a long time ago, they might be arithmetic or geometric sequences. The numbers are not very clear now, and only the first three numbers of each sequence are recognizable. Xinlv wants to know some numbers in these sequences, and he needs your help.

The first line contains an integer N, indicting that there are N sequences. Each of the following N lines contain four integers. The first three indicating the first three numbers of the sequence, and the last one is K, indicating that we want to know the K-th numbers of the sequence.
You can assume 0 < K <= 10^9, and the other three numbers are in the range [0, 2^63). All the numbers of the sequences are integers. And the sequences are non-decreasing.

Output one line for each test case, that is, the K-th number module (%) 200907.

2
1 2 3 5
1 2 4 5

5
16

## 代码

#include <iostream>
typedef long long ll;

ll arr[3];
const int MOD = 200907;

int fast_pow( ll a, ll b, int mod );

int main( void )
{
int t = 0;
std::cin >> t;
while( t-- )
{
for( int i = 0; i < 3; ++i )
std::cin >> arr[i];
int k = 0;
std::cin >> k;
int ans = 0;
if( arr[0] - arr[1] == arr[1] - arr[2] )
{
ans = (arr[0]%MOD + ((k-1)%MOD * (arr[1] - arr[0])%MOD)%MOD)%MOD;
}
else
{
ans = (arr[0]%MOD * fast_pow(arr[1]/arr[0], k-1, MOD))%MOD;
}
std::cout << ans << std::endl;
}
return 0;
}

int fast_pow( ll a, ll b, int mod )
{
int ans = 1;
ll w = a;// 这里小心，如果不是ll。可能 w%mod * w%mod这里就溢出了
while(b)
{
if(b%2)
ans = (ans * w)%mod;
w = (w%mod * w%mod)%mod;
b /=2 ;
}
return ans;
}

## 总结

#### Quick_Power快速幂

2015-10-05 10:32:05

#### quick_power(快速幂)

2016-12-29 20:59:33

#### 快速幂PowerMod

2018-03-28 15:15:40

#### 2016中国大学生程序设计竞赛(ccpc 长春)题解报告

2016-10-04 17:42:12

#### 九度OJ-1442：A sequence of numbers

2017-02-06 15:18:18

#### 快速幂模板

2017年10月18日 229B 下载

#### 快速幂+快速幂经典例题

2016-10-15 10:59:48

#### 快速幂的简单解释

2016-08-26 16:00:03

#### 快速幂及其简单应用

2017-02-10 03:55:15

#### 快速幂：一种经过优化的算法

2009年08月04日 109B 下载