深度学习—损失函数及BP算法初步学习Day36 MAE(Mean Absolute Error,平均绝对误差)通常也被称为 L1-Loss,通过对预测值和真实值之间的绝对差取平均值来衡量他们之间的差异。。
深度学习—参数初始化及激活函数Day35 MyModel 类定义了一个简单的前馈神经网络模型。这个模型包括三个全连接层 (nn.Linear),用于从输入数据到输出数据的转换。输入层到第一个隐藏层:输入大小为 input_size,输出大小为 128。第一个隐藏层到第二个隐藏层:输入大小为 128,输出大小为 64。第二个隐藏层到输出层:输入大小为 64,输出大小为 output_size。forward 方法定义了模型的数据流动过程,即如何从前一层传递到下一层,并最终产生输出。
线性回归Day32 线性回归(重点)前面介绍了很多分类算法,分类的目标变量是标称型数据,回归是对连续型的数据做出预测。标称型数据(Nominal Data)是统计学和数据分析中的一种数据类型,它用于分类或标记不同的类别或组别,数据点之间并没有数值意义上的距离或顺序。例如,颜色(红、蓝、绿)、性别(男、女)或产品类别(A、B、C)。标称数据的特点:无序性:标称数据的各个类别之间没有固有的顺序关系。例如,“性别”可以分为“男”和“女”,但“男”和“女”之间不存在大小、高低等顺序关系。非数值性:标称数据不能进行数学运算,
机器学习阶段学习Day31 根据K个邻居样本来判断当前样本属于哪个类别:K个最相似邻居中大多数所属类别即为当前样本的类别。但是对于数据量巨大或者高纬度的数据样本不太合适,数据量大的数据样本需要进行大量计算,而高纬度数据计算距离不具重要意义。
opencv基础-guI和pymsqlDay29 PySimpleGUI 是一个用于简化 GUI 编程的 Python 包,它封装了多种底层 GUI 框架(如 tkinter、Qt、WxPython 等),提供了简单易用的 API。PySimpleGUI 包含了大量的控件(也称为小部件或组件),这些控件可以帮助你快速构建用户界面。是一个用于连接 MySQL 数据库的纯 Python 实现。它允许 Python 程序与 MySQL 数据库进行交互,执行 SQL 查询,并处理结果集。1 准备工作:创建人脸表。
opencv基础-人脸识别Day28 是一个非常流行的 Python 库,专门用于人脸识别任务。它基于 dlib 库和 HOG(Histogram of Oriented Gradients)特征以及深度学习模型,提供了简单易用的接口来进行人脸检测、面部特征点定位和人脸识别。库由 Adam Geitgey 开发,旨在简化人脸识别任务,使其更加容易上手。主要功能人脸检测检测图像中的人脸位置。支持使用 HOG 特征或 CNN(卷积神经网络)进行人脸检测。面部特征点定位检测人脸上的关键特征点(如眼睛、鼻子、嘴巴等)。人脸识别。
openCV图像基础Day25 是 OpenCV 库中的一个函数,用于创建一个命名窗口,以便在该窗口中显示图像或进行其他图形操作。这个函数在处理图像和视频时非常有用,尤其是在开发基于图像处理的应用程序时函数原型参数说明(str): 窗口的名称。这个名称必须是唯一的,因为它是用来标识窗口的。flags (int, 可选): 窗口的标志,用于设置窗口的行为。默认值为。示例以下是一个简单的示例,展示如何使用详细解释使用cv2.imread函数读取图像文件。使用创建一个名为 “Image Window” 的窗口,并设置标志为。
队列和树Day23 队列(Queue),它是一种运算受限的线性表,先进先出(FIFO First In First Out)Python标准库中的queue模块提供了多种队列实现,包括普通队列、双端队列、优先队列等。
栈和链表Day22 数据结构是计算机科学中的一个核心概念,它是指数据的组织、管理和存储方式,以及数据元素之间的关系。数据结构通常用于允许高效的数据插入、删除和搜索操作。:数组、链表、栈、队列等。:树、二叉树、堆、图等。:哈希表。:B树、B+树等。
Pandas库学习Day21 可以更改原DataFrame的行标签或列标签,使更改后的行、列标签与DataFrame中的数据逐一匹配。若重置的索引标签在原DataFrame中不存在,那么该标签对应的元素值将全部填充为NaN。