用于认知无线电网络中协作频谱感知的机器学习技术研究(Matlab代码实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码、文章下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

摘要
我们提出了一种基于机器学习技术的新型协作频谱感知(CSS)算法,用于认知无线电(CR)网络中的模式分类。为此,我们实现了无监督(例如K均值聚类和高斯混合模型(GMM))和有监督(例如支持向量机(SVM)和加权K最近邻(KNN))学习的分类技术,用于协作频谱感知。对于无线信道,认知无线电设备估计的能量水平向量被视为特征向量,并输入分类器以判断该信道是否可用。分类器将每个特征向量归类为“信道可用类”或“信道不可用类”。在在线分类之前,分类器需要经过一个训练阶段。对于分类,K均值聚类算法将训练特征向量划分为K个簇,每个簇对应于主用户(PUs)的组合状态,然后分类器确定测试能量向量所属的类别。高斯混合模型(GMM)获得一组高斯密度函数,这些函数能够很好地描述训练特征向量。在支持向量机(SVM)的情况下,通过最大化分离超平面与训练特征向量之间的间隔,获得支持向量(即完全指定决策函数的训练向量子集)。此外,我们提出了一种用于CSS的加权KNN分类技术,其中每个特征向量的权重是通过评估该特征向量的接收者操作特征(ROC)曲线下面积来计算的。每种分类技术的性能通过平均训练时间、样本分类延迟和ROC曲线来量化。我们的比较结果清楚地表明,所提出的算法优于现有的最先进的CSS技术。

索引术语:认知无线电,协作频谱感知,K均值聚类,高斯混合模型(GMM),支持向量机(SVM),K最近邻,主用户检测


I. 引言

认知无线电(CR)的概念在过去十年中被提出,用于设计无线通信系统,通过提高频谱利用率来缓解有限无线频谱资源的稀缺问题。认知无线电是一种智能无线通信设备,它能够感知其运行的电磁环境,并动态自主地调整其无线电运行参数。在这种背景下,机会性频谱接入(OSA)是一个关键概念,它允许认知无线电设备在检测到主用户(PU)未进行传输时,机会性地接入分配给主用户的频段–。为了实现OSA,认知无线电设备需要利用其有限资源(例如能量和计算能力)感知授权给主用户的无线频谱,并随后利用可用的频谱机会以最大化其性能目标。因此,高效的频谱感知对于OSA至关重要。

当认知无线电设备分布在不同位置时,可以使用协作频谱感知(CSS)。与单独感知相比,认知无线电设备可以通过协作实现更高的感知可靠性,从而更好地解决由于阴影效应和多径衰落引起的隐藏主用户问题。在协作感知中,认知无线电设备将感知结果发送到融合中心以进行决策。在硬融合算法中,认知无线电设备仅与融合中心交换一位信息,以指示接收的能量是否高于某个特定阈值。例如,或规则(OR-rule)、与规则(AND-rule)、计数规则和线性二次组合规则常用于CSS。在中,考虑了一种带有两位开销的软化硬融合方案,每个认知无线电设备都参与其中。在软决策算法、中,认知无线电设备估计的精确能量水平被传输到融合中心以做出更好的决策。在中,作者提出了一种用于频谱感知的最优线性融合算法。研究了基于中继的协作频谱感知方案、。

在本文中,我们提出了基于机器学习技术的新型协作频谱感知方案。机器学习技术通常用于模式分类,其中从模式中提取特征向量并输入分类器,分类器将模式归类为某一类别。在CSS的背景下,我们将“能量向量”(每个分量是每个认知无线电设备估计的能量水平)视为特征向量。然后,分类器将能量向量归类为两个类别之一:“信道可用类”(对应于没有主用户活跃的情况)和“信道不可用类”(对应于至少有一个主用户活跃的情况)。在在线分类之前,分类器需要经过一个训练阶段,从训练特征向量中学习。根据采用的学习方法类型,分类算法可以分为无监督学习(例如K均值聚类和高斯混合模型(GMM))或有监督学习(例如支持向量机(SVM)和K最近邻(KNN))。

在有监督(无监督)学习中,训练特征向量被输入到分类器中,同时(不)带有其标签,该标签指示训练特征向量所属的实际类别。在本文中,我们提出了用于CSS的无监督和有监督学习技术。

与传统CSS技术相比,所提出的基于机器学习的CSS技术具有以下优势:

  • 所提出的技术能够以在线方式隐式学习周围环境(例如主用户和认知无线电网络的拓扑结构以及信道衰落)。因此,与需要环境先验知识以进行优化的传统CSS技术相比,所提出的技术更具适应性。

  • 所提出的技术能够在特征空间上描述比传统CSS技术(例如基于OR/AND规则和线性融合技术)更优化的决策区域,从而实现更好的检测性能。

尽管具有这些优势,但目前关于将机器学习技术应用于认知无线电网络CSS的研究仍然较少。文献[22]的作者提出了一种基于模式识别的线性融合规则用于CSS,其中线性系数通过费舍尔线性判别分析获得。据我们所知,除了文献[22]之外,现有文献中尚未采用机器学习技术用于CSS。

本文的主要贡献如下:

  • 我们提出使用无监督学习方法(如K均值聚类和高斯混合模型(GMM))用于CSS。K均值聚类算法将特征划分为K个簇,每个簇映射到“信道可用类”或“信道不可用类”。另一方面,在GMM中,我们从训练特征向量中获得一个高斯混合分布,其中混合分布中的每个高斯分布对应一个簇。

  • 由于其更高的预测能力,我们还提出使用有监督学习方法(如支持向量机(SVM)和K最近邻(KNN))用于CSS。在SVM中,通过最大化分离超平面与特征向量之间的间隔,获得支持向量(即完全指定决策函数的训练向量子集)。此外,还研究了加权KNN分类技术在CSS中的应用,并探讨了不同的距离度量方法。

  • 从训练时间、分类延迟和ROC曲线三个方面对每种分类技术的性能进行了评估。同时,量化了参与协作的认知无线电设备数量的影响。

本文的其余部分安排如下:第II节介绍系统模型和假设;第III节介绍基于机器学习的协作频谱感知框架;第IV节和第V节分别描述无监督和有监督的CSS算法;第VI节展示所提出的CSS算法的性能评估结果;最后,第VII节总结全文。

在本文中,我们为认知无线电(CR)网络设计了基于无监督和有监督学习技术的协作频谱感知(CSS)机制。

表三:不同CSS分类器的比较

分类方法训练时长分类延迟ROC性能
Fisher线性判别正常
K均值聚类正常
高斯混合模型(GMM)
SVM-线性正常
SVM-多项式正常
KNN-欧几里得正常
KNN-城市街区正常

我们提出使用无监督分类器,如K均值聚类和高斯混合模型(GMM)用于CSS,而支持向量机(SVM)和加权K最近邻分类器则被提出用于有监督学习下的CSS。次级用户(SUs)处测量到的能量水平被视为用于判断信道可用性的特征。我们从训练时长、分类延迟和ROC曲线三个方面量化了分类器的性能。所提出的SVM分类器通过利用核函数(即线性核和多项式核函数)将特征空间映射到更高维度,与其他CSS算法相比,实现了最高的检测性能。此外,无监督的K均值聚类方案在ROC性能方面几乎达到了与有监督的SVM-线性分类器相当的性能。特别是,加权KNN认知分类器需要非常少的时间用于分类器的训练。因此,加权KNN分类器非常适合需要实时更新训练能量向量的CSS。

更重要的是,无监督的K均值聚类和带线性核的有监督SVM是有希望用于CR网络中CSS的方法。在实际实现中,获取准确的训练能量向量非常重要,因为分类器的不准确训练会导致不准确的决策。所提出的CSS方法可以通过逐个使用获得的能量向量逐步训练分类器来进一步改进。这使得分类器能够适应变化的环境,而无需重新进行完整训练。

详细文章见第4部分。

📚2 运行结果

部分代码:

c1=r(label==1,:);
c2=r(label==2,:);figure;
plot(c1(:,1),c1(:,2),'c*'),hold on
plot(c2(:,1),c2(:,2),'ms');title('original data');axis([800 1400 800 1400])
moo_g1=mean0;sigma_g1=sigma0;v1=0.25;v2=1-v1;
moo_g2=[1250,1250];sigma_g2=[3000,0;0,3000];
for t=1:size(r,1)
    phi1(t)=(1./(((2.*pi).^(n/2)).*sqrt(det(sigma_g1)))).*exp(-0.5*(r(t,:)-moo_g1)*((sigma_g1)^(-1))...
        *(r(t,:)-moo_g1)');
end
for iteration=1:100
    for t=1:size(r,1)
        phi2(t)=(1./(((2.*pi).^(n/2)).*sqrt(det(sigma_g2)))).*exp(-0.5*(r(t,:)-moo_g2)*((sigma_g2)^(-1))...
            *(r(t,:)-moo_g2)');
    end
    %%%%%%%%E Step%%%%%%%%%
    landa1=(v1.*phi1)./((v1.*phi1)+(v2.*phi2));
    landa2=(v2.*phi2)./((v1.*phi1)+(v2.*phi2));
    %%%%%%%M Step%%%%%%%%%%
    moo_g2=newmoo(r,landa2);
    sigma_g2=newsigma(landa2,r,moo_g2);
    v1=newv(r,landa1);
    v2=newv(r,landa2);
end
ggg = gmdistribution([moo_g1;moo_g2], cat(3,sigma_g1,sigma_g2), [v2;v1]);
figure;
for x=1:size(r,1)
    pos(x,:)=posterior(ggg,r(x,:));
end
for y=1:size(pos,1)
    if pos(y,1)>pos(y,2)
        ll(y)=1;
    else
        ll(y)=2;
    end

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

🌈Matlab代码、文章下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值