现代密码学学习笔记第二章2.3-2.4

本文介绍了密码学中与因数分解相关的概念,包括2.3.1节的因数分解假设,指出大素数在密码安全中的重要性。2.3.2节讨论了素数的分布,如Chebyshev定理,表明素数在大数中的分布规律。此外,还证明了在因数分解假设下,乘法函数可以作为弱单向函数。
摘要由CSDN通过智能技术生成
2.3 Multiplication, Primes, and Factoring

考虑第一个单向函数。
f m u l t : N 2 → N f_{mult}:\mathbb{N}^2 \rightarrow \mathbb{N} fmult:N2N
f m u l t ( x , y ) = { 1 , i f x = 1 ∨ y = 1 x ⋅ y o t h e r w i s e f_{mult}(x,y)=\begin{cases} 1,\quad if \quad x=1 \vee y=1\\ x \cdot y \quad otherwise \end{cases} fmult(x,y)={ 1,ifx=1y=1xyotherwise
如果x,y中至少一个是偶数,则输出也是偶数,如果(x,y)是从 N 2 \mathbb{N}^2 N2中随机抽取,那么这个发生的概率为 3 4 \frac{3}{4} 43
因此攻击A成功的概率有 3 4 \frac{3}{4} 43
A ( z ) = { ( 2 , z 2 ) i f z e v e n ( 0 , 0 ) o t h e r w i s e . A(z)=\begin{cases} (2,\frac{z}{2}) \quad if \quad z even\\ (0,0) \quad otherwise. \end{cases} A(z)={ (2,2z)ifzeven(0,0)otherwise.

2.3.1 The Factoring Assumption

π n = { q    ∣    q < 2 n    a n d    q    i s    p r i m e } \pi_n= \left \{q \;|\;q<2^n \;and\;q\;is\;prime \right \} πn={ qq<2nandqisprime}
代表无限素数集合。

Assumption (Factoring):对于所有敌手A,存在一个可忽略函数概率 ϵ \epsilon ϵ,如

P r [ p ← π n ; q ← π n ; N ← p q : A ( N ) ∈ { p , q } ] < ϵ ( n ) Pr[p\leftarrow\pi_n;q\leftarrow\pi_n;N\leftarrow pq:A(N)\in \left \{p,q \right\}] < \epsilon(n) Pr[pπn;qπn;Np

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值