文中9.7节 Example:Concurrent Non-Blocking Cache
该例子实现一个功能,对函数进行缓存,这样函数对同样的参数只需要计算一次。该方法还是concurrent-safe
的,并且避免了对整个缓存加锁引起的竞争。
我们先来看串行的实现
串行的实现
func httpGetBody(url string) (interface{}, error) {
resp, err := http.Get(url)
if err != nil {
return nil, err
}
defer resp.Body.Close()
return ioutil.ReadAll(resp.Body)
}
type result struct {
value interface{}
err error
}
type Func func(key string) (interface{}, error)
type Memo struct {
f Func
cache map[string]result
}
func New(f Func) *Memo {
return &Memo{f: f, cache: make(map[string]result)}
}
func (memo *Memo) Get(key string) (interface{}, error) {
res, ok := memo.cache[key]
if !ok {
res.value, res.err = memo.f(key)
memo.cache[key] = res
}
return res.value, res.err
}
func testCache() {
incomingURLS := []string{"http://cn.bing.com/", "http://www.baidu.com", "http://cn.bing.com/", "http://www.baidu.com",
"http://www.baidu.com", "http://cn.bing.com/", "http://www.baidu.com",
"http://www.baidu.com", "http://cn.bing.com/", "http://www.baidu.com",
"http://www.baidu.com", "http://cn.bing.com/", "http://www.baidu.com",
"http://www.baidu.com", "http://cn.bing.com/", "http://www.baidu.com"}
m := New(httpGetBody)
allstart := time.Now()
for _, url := range incomingURLS {
start := time.Now()
value, err := m.Get(url)
if err != nil {
fmt.Println(err)
}
fmt.Printf("%s, %s, %d bytes\n",
url, time.Since(start), len(value.([]byte)))
}
fmt.Printf("all %s\n", time.Since(allstart))
}
执行结果
http://cn.bing.com/, 180.576553ms, 120050 bytes
http://www.baidu.com, 25.863523ms, 99882 bytes
http://cn.bing.com/, 397ns, 120050 bytes
http://www.baidu.com, 245ns, 99882 bytes
http://www.baidu.com, 154ns, 99882 bytes
http://cn.bing.com/, 123ns, 120050 bytes
http://www.baidu.com, 136ns, 99882 bytes
http://www.baidu.com, 123ns, 99882 bytes
http://cn.bing.com/, 127ns, 120050 bytes
http://www.baidu.com, 188ns, 99882 bytes
http://www.baidu.com, 116ns, 99882 bytes
http://cn.bing.com/, 123ns, 120050 bytes
http://www.baidu.com, 118ns, 99882 bytes
http://www.baidu.com, 180ns, 99882 bytes
http://cn.bing.com/, 140ns, 120050 bytes
http://www.baidu.com, 124ns, 99882 bytes
all 206.583298ms
利用go并行执行
我们利用sync.WaitGroup
来等待所有URL解析完成
func testCache() {
incomingURLS := []string{"http://cn.bing.com/", "http://www.baidu.com", "http://cn.bing.com/", "http://www.baidu.com",
"http://www.baidu.com", "http://cn.bing.com/", "http://www.baidu.com",
"http://www.baidu.com", "http://cn.bing.com/", "http://www.baidu.com",
"http://www.baidu.com", "http://cn.bing.com/", "http://www.baidu.com",
"http://www.baidu.com", "http://cn.bing.com/", "http://www.baidu.com"}
m := New(httpGetBody)
allstart := time.Now()
var n sync.WaitGroup
for _, url := range incomingURLS {
start := time.Now()
n.Add(1)
go func(url string) {
value, err := m.Get(url)
if err != nil {
fmt.Println(err)
}
fmt.Printf("%s, %s, %d bytes\n",
url, time.Since(start), len(value.([]byte)))
n.Done()
}(url)
n.Wait()
}
fmt.Printf("all %s\n", time.Since(allstart))
}
结果可以看到时间更短了,但是里面出现竞争关系了。
if !ok {
res.value, res.err = memo.f(key)
memo.cache[key] = res
}
可能一个goroutine判断!ok时,另外的goroutine也判断!ok,f还是执行了多次。
添加互斥锁
type Memo struct {
f Func
mu sync.Mutex
cache map[string]result
}
func (memo *Memo) Get(key string) (interface{}, error) {
memo.mu.Lock()
defer memo.mu.Unlock()
res, ok := memo.cache[key]
if !ok {
res.value, res.err = memo.f(key)
memo.cache[key] = res
}
return res.value, res.err
}
但是这样造成一个问题,把Memo重新变回了串行访问。
最终方法1:使用指针标记
作者的思路就是实现这样的一个结果,一个goroutine调用函数,完成耗时的工作,其他调用同样函数的goroutine等待函数执行完毕后立马获取结果。
type result struct {
value interface{}
err error
}
type entry struct {
res result
ready chan struct{}
}
type Func func(key string) (interface{}, error)
type Memo struct {
f Func
mu sync.Mutex
cache map[string]*entry
}
func New(f Func) *Memo {
return &Memo{f: f, cache: make(map[string]*entry)}
}
func (memo *Memo) Get(key string) (interface{}, error) {
memo.mu.Lock()
e := memo.cache[key]
if e == nil {
e = &entry{ready: make(chan struct{})}
memo.cache[key] = e
memo.mu.Unlock()
e.res.value, e.res.err = memo.f(key)
close(e.ready)
} else {
memo.mu.Unlock()
<-e.ready
}
return e.res.value, e.res.err
}
Memo的cache成员由map[string]result
变为map[string]*entry
entry的结构为:
type entry struct {
res result
ready chan struct{}
}
ready通道用来通知其他goroutine函数执行完毕可以读取结果了。
代码的核心在Get函数中的下面部分
memo.mu.Lock()
e := memo.cache[key]
if e == nil {
e = &entry{ready: make(chan struct{})}
memo.cache[key] = e
memo.mu.Unlock()
将函数f的计算从锁区域中分离开了,通过memo.cache[key] = e
实现只有一个goroutine会执行函数运算。
最终方法2:使用客户端服务器模型
专门一个服务进程负责缓存,其它goroutine向该服务进程请求函数结果。
// Func is the type of the function to memoize.
type Func func(key string) (interface{}, error)
// A result is the result of calling a Func.
type result struct {
value interface{}
err
error
}
type entry struct {
res
result
ready chan struct{} // closed when res is ready
}
下面是关键部分代码
type request struct {
key string
response chan<- result
}
type Memo struct {
requests chan request
}
Memo的成员是一个值类型为request的通道requests,用来向服务器发送函数请求,request类型包含一个result的通道,传递给服务器后,服务器用来给相应的goroutine传递函数的结果。
New函数主要创建了request通道和启动服务器:
func New(f Func) *Memo {
memo := &Memo{request: make(chan request)}
go memo.server(f)
return memo
}
Get函数创建result通道response,构建resquest,然后通过requests通道发送给服务器,通过response接受函数结果。
func (memo *Memo) Get(key string) (interface{}, error) {
response := make(chan result)
memo.requests <- request{key, response}
res := <-response
return res.value, res.err
}
func (memo *Memo) Close() {
close(memo.requests)
}
接下来是服务器程序
func (memo *Memo) server(f Func) {
cache := make(map[string]*entry)
for req := range memo.requests {
e := cache[req.key]
if e == nil {
// This is the first request for this key.
e = &entry{ready: make(chan struct{})}
cache[req.key] = e
go e.call(f, req.key) // call f(key)
}
go e.deliver(req.response)
}
}
func (e *entry) call(f Func, key string) {
// Evaluate the function.
e.res.value, e.res.err = f(key)
// Broadcast the ready condition.
close(e.ready)
}
func (e *entry) deliver(response chan<- result) {
//等待函数执行结束
<-e.ready
//发送结果到客户端
response <- e.res
}