常见监督学习、聚类、集成、降维、推荐算法汇总(一):监督学习
前言监督学习最简单的理解就是给数据打上标签后让机器进行学习的模式。支持向量机(SVM)硬间隔最大化支持向量机目的: 寻找能达到最优分类的超平面,并且使其具有最优的鲁棒性,即最好的泛化能力。感知机: 以误分类最小为策略(解)支持向量机: 以间隔最大化为策略(存在最优解)函数间隔和几何间隔的差别?答:一般来说一个点距离超平面的远近可以衡量预测的确信程度。函数间隔可以表示分类预测的正确性以及准确度,但是成比例的改变超平面的参数,在超平面不变的情况下,函数间隔也会增加。为了解决这个问题就将超平面的参





