大数据的常见业务问题和业务场景

概述

搜索引擎概述

  • 桥梁——引导用户找到所求
  • 满足用户需求的过程
  • 连接人与内容、人与服务
    在这里插入图片描述
  • 爬虫:数据收集中心,互联网世界的缩影
  • 索引系统:分析整理爬虫收集到的资源,为检索系统提供数据
  • 检索系统:从预处理好的资源中挑选用户最满意的结果最快最好的展现。

基于MapReduce的互联网网页大数据建库系统

  • 将网页库下载到文件系统中形成网页文件(HTML)(HDFS)
  • 通过Parser提炼、抽取原网页文件生成处理过的网页文件(HDFS)。
  • Inverter对处理过的网页文件进行倒排后,建立索引生成小索引文件(HDFS)
  • 索引合并后形成正式索引文件(HDFS)后对外进行服务

具体流程如下:

  • 目的:建立供检索使用的索引和摘要
  • 输入:网页
  • 输出:索引和摘要
  • 处理:多轮map-reduce
  • 页面分析和处理(parser-extractor)
  • 页面属性小库输出(splitter)
  • 小库正排转倒排(invert-index)
  • 小库合并大库(index merge)

什么是正排?什么是倒排?
答:从url解析出关键词排列叫做正排,从关键词索引到url排列叫倒排。

如何去除url不一样但页面内容一样的网页?
答:布隆过滤器(Bloom Filter)。

  • 由一个很长的二进制和一系列随即映射函数组成
  • 布隆过滤器可以用于检索一个元素是否在一个集合中
  • 优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率。

去重是依靠已有的标记进行去重,只需要维护很小的过滤器文件,将新页面通过Hash后,对比过滤器文件中的数据,再判断是否重复即可

广告系统概述

广告:搜索场景、网盟场景、

  • 自主搜索流量:淘宝直通车、百度搜索推广、Google AdWords
  • 联盟(外部)流量:淘宝阿里妈妈、百度网盟推广、Google AdSense
  • 品牌广告:钻石展位、百度精准广告
  • 按成交计费:淘宝客

广告系统付费模式:

  • 搜索广告点击计费(CPC)
  • 展示广告展现计费(CPM)
  • 淘宝客(CPS)
    淘宝广告系统简介
  • 搜索广告:网民、广告主、搜索平台
  • 广告触发:关键词表达需求、网民输入的query和广告主购买的keyword进行匹配。
  • CTR预估(click/show):点击率用户广告的排序和推左,保护网民的利益和提升搜索引擎的收益。
  • 广告排序:关键词广告拍卖机制

平台要综合广告的质量、平台所获得的收益、用户的利益综合考量博弈,最终目标应是在不损害用户利益的条件下,保证平台的利润最大。

  1. 关键词分析(nlp文本分析、中文分词、句相似度、意图分析、主题词)
  2. 相关性分析(同义词、关联规则、宽泛匹配、用户偏好、cookie、session)
  3. 检测数据库索引(短语匹配、业务过滤、倒排索引)
  4. 广告展示(创意标题、描述、url)
  5. 广告排序(根据 点击率 * 价格 等、选择高质量广告)

推荐系统概述

推荐系统主要可以分为以下三个部分:

  • ONLINE——在线:对数据进行实时产生(存在妥协、对时效性要求较强)NoSQL、websever、
  • NEARLINE——近线:storm(ms级)、sparkStreaming(秒级)
  • OFFLINE——离线:批量跑全天的数据(耗时的算法和计算)mapreduce、spark、hive、mahout

部分案例具体说明:

  • 离线挖掘出的有效数据,想办法快速提供服务,通过类似NoSQL中间介质进行交换。OFFline给定一个离线挖掘任务,将数据转至NoSQL(redis、memcache、couchbase、hbase、leveldb、mongod(特点:快)、NoSQL可以存储大量的数据),再将数据对接到websever。
  • Online首先必须保证WebUI,数据来自于websever、nosql等。

抽象出三种推荐方式

  • 用户(相似兴趣/好友)——用户(喜欢)——物品
  • 用户(历史、关联)——物品——物品
  • 用户(喜欢、具有)——特征(包含)——物品

用户行为数据——不同的搜索引擎——初始推荐结果——过滤——排名——推荐

一个具体的案例

某音乐推荐系统🎵目的:为用户推荐其他音乐

初级版本:

  • 用户——》反作弊——》行为日记收集——》数据清洗——》结构化入库(HDFS、Hbase)——》数据挖掘平台(推荐、分类、聚类)——》(nosql)缓存数据库(好友关系、音乐榜单、相关音乐(key-value))——》在线搜索引擎——》WebUI《——用户

反作弊:恶意刷屏、同行竞争
行为日志收集:展现日志+点击日志
数据清洗:去除冗余数据、非结构化到结构化
结构化入库:用户行为数据(mid1、mid2、mid3)
数据挖掘平台:人物画像

总结:从用户处收集数据、分析、挖掘后又反之推荐给用户。
在这里插入图片描述
进阶版本: 加入内容提供商

  • 内容提供商——》操作平台(内容管理系统CMS)——》发布系统——》结构化入库(物品元数据:music_id、desc、tag、local、style、img、url)
  • 结构化入库——》报表系统——》内容管理系统(迭代优化)

再进阶版本: 加入工程师、技术人员(干活)(任务是优化系统)

  • 监控系统(缓存数据库、在线检索、数据挖掘等)——》工程师——》统一配置服务器(配置资源)——》在线搜索引擎

再再进阶版本: 加入产品经理 PM

  • 分析调研系统《——报表系统——》评估系统——》PM——》需求发布系统——》工程师

技术总结:

  • WebUI:安卓、前端、IOS、HTML
  • 在线搜索引擎:webpython、java、Thrift RPC
  • 缓存数据库:redis、Hbase、MongoDB
  • 数据挖掘平台:Mapreduce、Spark、tensorflow、caffe、storm
  • 统一配置服务器:Zookeeper
  • 监控系统:Nagios、Zabbix
  • 结构化入库:HDFS、HBase、MySQL
  • 数据清洗:ETL、Mapreduce、Spark
  • 行为日志收集:Flume+Kafka+Storm+HDFS/HBase/MySQL
  • 发布系统:MQ:Kafka、ActiveMQ
  • 报表系统:Hive、SparkSQL
  • 需求发布系统:Jira、Bugzilla
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值