SDUT 2021 Summer Individual Contest补题
C - Cryptography
多源 带权 无向图 最短路 -> Floyd算法
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <cstdio>
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,a,n) for(int i=a;i<=n;i++)//压缩代码
using namespace std;
const int N = 1e5+5, INF = 1e9;
int d[130][130];
void floyd(){
rep(k,33,126)
rep(i,33,126)
rep(j,33,126)
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
int main()
{
int n, x;
char u, v;
char s1[N], s2[N];
cin >> s1 >> s2 >> n;
int l = strlen(s1);
rep(i,33,126)//题目所给ascii码范围:33~126
rep(j,33,126)
if(i == j)
d[i][j] = 0;
else
d[i][j] = INF;
rep(i,1,n){
cin >> u >> v >> x;
d[u][v] = min(x, d[u][v]);//保存权值小的
}
floyd();
int ans = 0;
rep(i,0,l-1){
ans += d[s1[i]][s2[i]];
if(ans > INF){//判断可达性
ans = -1;
break;
}
}
cout << ans << endl;
return 0;
}
路上看到一篇关于 memset 和 0x3f 的一篇很详细的博文:
链接
H - Happy Birthday UN
- 闰年条件
- 过一个闰年天数+2,过一个平年天数+1,不建议直接加365或者366,随时取模7就可以
- 一开始想过用n去模4然后乘五特判100 400的情况,但是属实不如直接特判闰年简单
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(a,i,n) for(int i=a;i<=n;i++)
using namespace std;
const int N = 1e7+5;
int main()
{
int n;
cin >> n;
int cnt = 0;
for (int i=1868;i<=n+1867;i++){
if((i%4==0 && i%100!=0) || (i%400==0))
cnt += 2;
else
cnt += 1;
cnt %= 7;
}
switch (cnt){
case 0:cout << "Sunday" << endl;break;
case 1:cout << "Monday" << endl;break;
case 2:cout << "Tuesday" << endl;break;
case 3:cout << "Wednesday" << endl;break;
case 4:cout << "Thursday" << endl;break;
case 5:cout << "Friday" << endl;break;
case 6:cout << "Saturday" << endl;break;
}
return 0;
}
I - Intense Bit Wheel
- 将十进制转换二进制储存到数组
- 位移操作:储存到新数组
- 将二进制转换为10进制
随便找了篇: 关于二进制与十进制的转换
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <cstdio>
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,a,n) for(int i=a;i<n;i++)
#define ll long long
using namespace std;
const int N = 100;
int num[N];
int p[N];
int main()
{
ll m, n, a, b, cnt, ans, now;
cin >> m >> n;
while(n --){
cin >> a >> b;
mem(num,0);
mem(p,0);
cnt = 0;
ans = 0;
now = 1;//1>2>4>8>16...
b %= m;
///模拟二进制到数组
while(a > 1){
num[ cnt ++ ] = a % 2;
a /= 2;
}
num[ cnt ++ ] = a % 2;
///位移
rep(i,0,b){
p[ i ] = num[ m - b + i ];
}
rep(i,0,m-b){
p[ b + i ] = num[ i ];
}
///取数
rep(i,0,m){
if(p[ i ] == 1){
ans += now;
}
now = now * 2;
}
cout << ans << endl;
}
return 0;
}
M - Marbles Lucky Distribution
- 大意:n个红球,m个蓝球,k个瓶子,不能有空瓶,每个球对应一个瓶子,随机取瓶子,从中随机取球,问怎么放拿蓝球概率大。
- 我的想法是用最小代价换最大利益。因为瓶子是随机取的(1/k),所以最好是在瓶子里单独放一个蓝球。有如下数学式:
a = n - k + 1;//a 是蓝球填满(k-1)个瓶子后剩下的数量 ans = a / (m + a) / k + (k - 1.0) / k;
- 注意当红球+蓝球>瓶子数并且蓝球小于k-1时的特判
(sample:50 5 10 答案应该是0.5)
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <cstdio>
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,a,n) for(int i=a;i<=n;i++)
using namespace std;
int main()
{
int m, n, k;
cin >> m >> n >> k;
int a = n - k + 1;
double ans = (double)a / (m + a) / k + (double)(k - 1.0) / k;
if(n < k)
ans = (double) n / k;
printf("%.9lf\n",ans);
return 0;
}
本文介绍了算法竞赛中的几个实用技巧,包括使用Floyd算法解决多源带权无向图的最短路径问题,通过位运算实现二进制转换及操作,以及如何通过数学方法计算特定概率问题。还提供了一些代码示例。
8198





