SDUT 2021 Summer Individual Contest - 2(for 20) 部分

本文介绍了算法竞赛中的几个实用技巧,包括使用Floyd算法解决多源带权无向图的最短路径问题,通过位运算实现二进制转换及操作,以及如何通过数学方法计算特定概率问题。还提供了一些代码示例。

C - Cryptography

原题链接

多源 带权 无向图 最短路 -> Floyd算法

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <cstdio>
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,a,n) for(int i=a;i<=n;i++)//压缩代码
using namespace std;

const int N = 1e5+5, INF = 1e9;
int d[130][130];

void floyd(){
    rep(k,33,126)
        rep(i,33,126)
            rep(j,33,126)
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

int main()
{
    int n, x;
    char u, v;
    char s1[N], s2[N];
    cin >> s1 >> s2 >> n;
    int l = strlen(s1);
    rep(i,33,126)//题目所给ascii码范围:33~126
        rep(j,33,126)
            if(i == j)
                d[i][j] = 0;
            else
                d[i][j] = INF;
    rep(i,1,n){
        cin >> u >> v >> x;
        d[u][v] = min(x, d[u][v]);//保存权值小的
    }
    floyd();
    int ans = 0;
    rep(i,0,l-1){
        ans += d[s1[i]][s2[i]];
        if(ans > INF){//判断可达性
            ans = -1;
            break;
        }
    }
    cout << ans << endl;
    return 0;
}

路上看到一篇关于 memset 和 0x3f 的一篇很详细的博文:
链接

H - Happy Birthday UN

原题链接

  1. 闰年条件
  2. 过一个闰年天数+2,过一个平年天数+1,不建议直接加365或者366,随时取模7就可以
  3. 一开始想过用n去模4然后乘五特判100 400的情况,但是属实不如直接特判闰年简单

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(a,i,n) for(int i=a;i<=n;i++)
using namespace std;

const int N = 1e7+5;

int main()
{
    int n;
    cin >> n;
    int cnt = 0;
    for (int i=1868;i<=n+1867;i++){
        if((i%4==0 && i%100!=0) || (i%400==0))
            cnt += 2;
        else
            cnt += 1;
        cnt %= 7;
    }
    switch (cnt){
    case 0:cout << "Sunday" << endl;break;
    case 1:cout << "Monday" << endl;break;
    case 2:cout << "Tuesday" << endl;break;
    case 3:cout << "Wednesday" << endl;break;
    case 4:cout << "Thursday" << endl;break;
    case 5:cout << "Friday" << endl;break;
    case 6:cout << "Saturday" << endl;break;
    }
    return 0;
}

I - Intense Bit Wheel

原题链接

  1. 将十进制转换二进制储存到数组
  2. 位移操作:储存到新数组
  3. 将二进制转换为10进制

随便找了篇: 关于二进制与十进制的转换

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <cstdio>
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,a,n) for(int i=a;i<n;i++)
#define ll long long
using namespace std;
const int N = 100;

int num[N];
int p[N];

int main()
{
    ll m, n, a, b, cnt, ans, now;
    cin >> m >> n;
    while(n --){
        cin >> a >> b;
        mem(num,0);
        mem(p,0);
        cnt = 0;
        ans = 0;
        now = 1;//1>2>4>8>16...
        b %= m;
        ///模拟二进制到数组
        while(a > 1){
            num[ cnt ++ ] = a % 2;
            a /= 2;
        }
        num[ cnt ++ ] = a % 2;

        ///位移
        rep(i,0,b){
            p[ i ] = num[ m - b + i ];
        }
        rep(i,0,m-b){
            p[ b + i ] = num[ i ];
        }

        ///取数
        rep(i,0,m){
            if(p[ i ] == 1){
                ans += now;
            }
            now = now * 2;
        }
        cout << ans << endl;
    }
    return 0;
}

M - Marbles Lucky Distribution

原题链接

  1. 大意:n个红球,m个蓝球,k个瓶子,不能有空瓶,每个球对应一个瓶子,随机取瓶子,从中随机取球,问怎么放拿蓝球概率大。
  2. 我的想法是用最小代价换最大利益。因为瓶子是随机取的(1/k),所以最好是在瓶子里单独放一个蓝球。有如下数学式:
a = n - k + 1;//a 是蓝球填满(k-1)个瓶子后剩下的数量
ans = a / (m + a) / k  + (k - 1.0) / k;
  1. 注意当红球+蓝球>瓶子数并且蓝球小于k-1时的特判
    (sample:50 5 10 答案应该是0.5)
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <cstdio>
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,a,n) for(int i=a;i<=n;i++)
using namespace std;
int main()
{
    int m, n, k;
    cin >> m >> n >> k;
    int a = n - k + 1;
    double ans = (double)a / (m + a) / k  + (double)(k - 1.0) / k;
    if(n < k)
        ans = (double) n / k;
    printf("%.9lf\n",ans);
    return 0;
}
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值