-
关键词:Entity names, realtions, attributes
-
摘要
我们研究了知识图之间基于嵌入的实体对齐问题。之前的研究主要集中在实体的关系结构上。有些还进一步合并了另一种类型的特性,比如属性,以进行细化。然而,大量的实体特征尚未被探索或没有被平等地放在一起处理,这破坏了基于嵌入的实体对齐的准确性和鲁棒性。在本文中,我们提出了一个新的框架,统一实体的多个视图来学习嵌入来实现实体对齐。具体来说,我们根据实体名称、关系和属性的视图嵌入实体,并使用几种组合策略。此外,我们设计了一些跨KG推理方法来提高两个KG之间的对齐。我们在真实数据集上的实验表明,所提出的框架显著优于目前最先进的基于嵌入的实体对齐方法。所选择的视图、跨KG推理和组合策略都有助于性能的提高。
-
介绍
两个问题:第一,KG中的实体都有不同特征,但当前基于嵌入的方法基本只使用一个或两个方面的特征。实际上,不同类型的特征表征了实体身份的不同的方面。同时利用所有这些方面可以提高对齐的准确性和鲁棒性。第二,现有的基于嵌入的实体对齐方法依赖大量的种子实体对齐作为标记训练数据。然而,种子实体对齐并不易获得。此外,普遍认为实体对齐可以受益于关系和属性对齐。但现有的方法假设种子关系和属性可以很容易提前找到。事实上,从各种特征中学习嵌入可以自动发现更多的对齐信息并减轻对种子对齐的依赖。
为解决以上问题,我们提出了MultiKE,一种新的基于多视图KG嵌入的实体对齐框架。其基本思想是将KG的各种特性划分为多个子集(称为视图),这些子集相互补充(例如,请参见图1)。
因此,可以从每个特定的视图中学习实体嵌入,并进行联合优化以提高对齐性能。本文贡献如下:
-
基于KG的数据模型,我们基于名称,关系和属性特征定义了三个代表性视图。对于每个视图,我们都采用适当的模型从中学习嵌入。
-
对于实体对齐,我们在实体级别以及关系和属性级别分别设计了两种跨KG身份推断方法,以保留和提高不同KG之间的对齐。
-
我们提出了三种不同的策略来组合多个特定于视图的实体嵌入。最后,通过组合嵌入找到实体对齐。
-
我们在两个真实数据集上的实验表明,MultiKE在很大程度上优于现有的基于嵌入的实体对齐方法。选定的视图,跨KG推理和组合策略均有助于改进。 MultiKE在无人监督的实体对齐方式上也取得了可喜的结果,与传统的实体对齐方法相当。
-
方法
1.多视图KG嵌入
1.1 问题陈述
我们将KG形式化为一个七元组
,其中
和
分别表示实体集合,关系,属性和文字。
表示实体的名称视图,
表示关系视图,
表示属性视图。给定一个源知识图谱

MultiKE是一种基于名称、关系和属性特征的多视图知识图谱嵌入方法,用于跨KG实体对齐。通过结合实体、关系和属性级别的身份推断以及多种组合策略,它在真实数据集上表现出优越性能。
最低0.47元/天 解锁文章
542

被折叠的 条评论
为什么被折叠?



