基本信息:
HOG即histogram of oriented gradient,是用于目标检测的特征描述子,该技术将图像局部出现的方向梯度次数进行计数。是由Navneet Dalal and Bill Triggs首先在05年的CVPR中提出HOG,用于静态图像or视频的行人检测。
paper链接:Histograms of oriented gradients for human detection
核心思想:
物体的轮廓都能用光强梯度或边缘方向的分布所描述,并且通过对图像的小连通区域的分割和颜色空间的压缩处理降低图像局部的阴影和光照的变换,提高检测的鲁棒性。
本质:梯度的统计信息(直方图)来描述物体边缘分布。
算法流程:
1:标准化gamma空间和色彩空间。减少对检测有用图像的冗余信息
Gamma公式:
2:计算梯度信息(一阶梯度)
梯度公式:
梯度方向:
3:将图像按照一定尺寸换分单元格,将单元格中的所有像素的一维梯度直方图映射到固定角度上(方向的个数自定)。
4:将多个相邻单元格组成块,并在块内归一化梯度直方图。
作用:归一化可以进一步对光照,阴影等进一步压缩。
特点:同一单元格在不同的块中归一化结果将不同。归一化后的块描述符称之为HOG描述符。
5:收集HOG特征
优劣:
优势:计算量小,保持了几何光学转换不变性。
劣势:没有旋转和尺度的不变性。
削弱HOG的劣势的方法:
对于进行尺度缩放的图片,要相应的对模版进行缩放。