E - Eddy's爱好 HDU - 2204 (数论 容斥原理)

Ignatius 喜欢收集蝴蝶标本和邮票,但是Eddy的爱好很特别,他对数字比较感兴趣,他曾经一度沉迷于素数,而现在他对于一些新的特殊数比较有兴趣。 
这些特殊数是这样的:这些数都能表示成M^K,M和K是正整数且K>1。 
正当他再度沉迷的时候,他发现不知道什么时候才能知道这样的数字的数量,因此他又求助于你这位聪明的程序员,请你帮他用程序解决这个问题。 
为了简化,问题是这样的:给你一个正整数N,确定在1到N之间有多少个可以表示成M^K(K>1)的数。 

Input

本题有多组测试数据,每组包含一个整数N,1<=N<=1000000000000000000(10^18). 

Output

对于每组输入,请输出在在1到N之间形式如M^K的数的总数。 
每组输出占一行。 

Sample Input

10
36
1000000000000000000

Sample Output

4
9
1001003332

题意:

给出一个范围(1,N)问存在多少这样的数M^K(k>1)

题解:

我这样分析:

1、对于某个M^K,我们不妨将K分解,假设分解成为a,b,那么M^(a*b),那么会发现一重复的问题,就是(M^a)^b和(M^b)^a是重复计算了,那么要使得不重复计算K一定不能分解,那么K必须为素数。

2、现在分析某个M^K,对于这样的K有多少个M能够满足,满足的个数为:N^(1/K),好啦,分析到这里可以通过枚举素数计算个数了,因为10^18小于2^60,那么也就是说只要枚举60以内的素数。

3、上面的分析为基础,继续分析会发现这样的特例对于a^i,b^j,如果a=t^j,b=t^i,那么这样就重复计算了,所以就要用到容斥原理把重复的删。对于这样的a^i,b^j,重复的个数就是N^(1/i/j);

这里注意一个点,如果直接这样计算,我保证会出现负数等非答案的解,因为精度问题。有一个技巧可以解决这个问题。就是在pow后面加一个esp,这样就不会出错了。


转自:https://blog.csdn.net/my_acm_dream/article/details/44541557 

#include <iostream>
#include <cstdio>
#include <math.h>
#include <cstring>
#include <algorithm>
#include <string>
#include <map>
using namespace std;
#define  ll long long
#define eps 1e-9
ll n,sum;
int p[]= {2,3,5,7,11,13,17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61};
ll dfs(ll x,ll y)
{
    ll sum=0;
    for(int i=x;i<19;i++)
    {
        ll cnt=(pow(n,1.0/(y*p[i]))+eps);
        sum+=cnt-dfs(i+1,y*p[i]);
    }
    return sum;
}
int main()
{

    while(~scanf("%lld",&n))
    {
        sum=0;
        printf("%lld\n",dfs(0,1,1));
    }
    return 0;
}

 

#include <iostream>
#include <cstdio>
#include <math.h>
#include <cstring>
#include <algorithm>
#include <string>
#include <map>
using namespace std;
#define  ll long long
#define eps 1e-9
ll n,sum;
int p[]= {2,3,5,7,11,13,17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61};
//ll dfs(ll x,ll y)
//{
//    ll sum=0;
//    for(int i=x;i<19;i++)
//    {
//        ll cnt=(pow(n,1.0/(y*p[i]))+eps);
//        sum+=cnt-dfs(i+1,y*p[i]);
//    }
//    return sum;
//}
ll  dfs(ll a, ll b,ll c)
{
    for(ll i=a; i<19; i++)
    {
        ll cnt=pow(n,1.0/(b*p[i]))+eps;
        if(c&1)
            sum+=cnt;
        else
            sum-=cnt;
        dfs(i+1,b*p[i],c+1);
    }
    return sum;
}
int main()
{

    while(~scanf("%lld",&n))
    {
        sum=0;
        printf("%lld\n",dfs(0,1,1));
    }
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值