概率论笔记

第一章 概率论的基本概念

0 x 11 0x11 0x11 随机试验

一、随机现象

① 确定性现象

定义:在一定条件下必然发生的现象称为确定性现象.

确定性现象的特征:条件完全决定结果

② 随机现象

定义:在一定条件下可能出现也可能不出现的现象称为随机现象.

随机现象的特征:条件不能完全决定结果,但能决定所有可能结果的集合

说明

  1. 随机现象揭示了条件和结果之间的非确定性联系,其数量关系无法用函数加以描述。
  2. 随机现象在一次观察中出现什么结果具有偶然性,但在大量试验或观察中,这种结果的出现具有一定的统计规律性。

二、随机试验

定义:在概率论中,把具有以下三个特征的试验称为随机试验,用 E E E 表示。

  1. 可以在相同的条件下重复地进行;
  2. 每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;
  3. 进行一次试验之前不能确定哪一个结果会出现。

0 x 12 0x12 0x12 样本空间、随机事件

一、样本空间 样本点

定义:随机试验E的所有可能结果组成的集合称为 E E E 的样本空间,记为 S S S .
样本空间的元素,即试验 E E E 的每一个结果,称为样本点

eg

样本有限:抛掷一枚骰子,观察出现的点数.

样本空间: S = { 1 , 2 , 3 , 4 , 5 , 6 } S=\{ 1,2,3,4,5,6 \} S={1,2,3,4,5,6}

样本无限:从一批灯泡中任取一只,测试其寿命.

样本空间: S = { t   ∣   t ≥ 0 } S=\{t\ |\ t\geq 0 \} S={t  t0}

样本多维:考察某地区12月份某地一昼夜的最高气温和最低气温.

S = { ( x , y )   ∣   T 0 ≤ x ≤ y ≤ T 1 } S=\{ (x,y)\ |\ T_0\leq x\leq y\leq T_1 \} S={(x,y)  T0xyT1}

说明

  1. 同一试验,若试验目的不同,则对应的样本空间也不同。
  2. 建立样本空间,事实上就是建立随机现象的数学模型。

二、随机事件的概念

随机事件定义:随机试验 E E E 的样本空间 S S S 的子集称为 E E E 的随机事件,简称事件。

基本事件:有一个样本点组成的单点集

必然事件:随机试验中必然会出现的结果

不可能事件: 随机试验中不可能出现的结果

三、随机事件间的关系及运算

设试验 E E E 的样本空间为 S S S ,而 A , B , A k ( k = 1 , 2 , . . . ) A, B, A_k (k=1,2,...) A,B,Ak(k=1,2,...) S S S 的子集。

①.包含关系

若属于事件 A A A的样本点必属于事件 B B B,则称事件 B B B包含事件 A A A,记为$A\subset B 。 同 时 , 事 件 。 同时,事件 A 称 为 是 事 件 称为是事件 B 的 子 事 件 。 对 任 意 随 机 事 件 的子事件。对任意随机事件 A , 都 有 ,都有 ,\phi\subset A\subset S$。

②. 等于关系

若事件 A A A包含事件 B B B,而且事件 B B B包含事件 A A A,则称事件 A A A与事件 B B B相等,记作 A = B A=B A=B.

③. 事件 A A A B B B的并(和事件)

事件 A ∪ B = { x ∈ A   或   x ∈ B } A\cup B=\{x\in A\ 或\ x\in B\} AB={xA  xB}称为事件 A A A与事件 B B B的和事件.
当且仅当事件 A A A或事件 B B B至少有一个发生时,则称事件 A A A与事件 B B B的并事件发生,记该事件为 A ∪ B A\cup B AB.

推广

∪ k = 1 n A k \cup_{k=1}^{n}A_k k=1nAk n n n个事件 A 1 , A 2 , . . . A n A_1, A_2,...A_n A1,A2,...An的和事件

∪ k = 1 ∞ A k \cup_{k=1}^{∞}A_k k=1Ak为可列事件 A 1 , A 2 , . . . A n A_1, A_2,...A_n A1,A2,...An的和事件

④. 事件 A A A B B B的交(积事件)

事件 A ∩ B = { x ∣ x ∈ A 且 x ∈ B } A\cap B=\{x |x\in A 且x\in B\} AB={xxAxB}称为事件 A A A与事件 B B B的积事件.
当且仅当事件 A A A与事件 B B B同时发生时,则称事件 A A A与事件 B B B的交事件发生,记该事件为 A ∩ B A\cap B AB.

推广

∩ k = 1 n A k \cap_{k=1}^{n}A_k k=1nAk n n n个事件 A 1 , A 2 , . . . A n A_1, A_2,...A_n A1,A2,...An的积事件

∩ k = 1 ∞ A k \cap_{k=1}^{∞}A_k k=1Ak为可列事件 A 1 , A 2 , . . . A n A_1, A_2,...A_n A1,A2,...An的积事件

和事件与积事件的运算性质

  1. A ∪ A A\cup A AA
  2. A ∩ S = S A\cap S=S AS=S
  3. A ∪ ϕ = A A\cup \phi =A Aϕ=A
  4. A ∩ A = A A\cap A=A AA=A
  5. A ∩ S = A A\cap S =A AS=A
  6. A ∩ ϕ = ϕ A\cap \phi =\phi Aϕ=ϕ

⑤. 事件 A A A B B B 的差

由事件 A A A出现而事件 B B B不出现所组成的事件称为事件 A A A B B B的差.记作 A − B A-B AB.

⑥. 事件 A A A B B B互不相容(容斥)

若事件 A A A与事件 B B B不同时出现,则称事件 A A A B B B互不相容,即 A ∩ B = A B = ϕ A\cap B=AB=\phi AB=AB=ϕ

⑦. 事件 A A A的对立事件(补事件)

A A A表示“事件 A A A出现”,则“事件 A A A不出现”称为事件 A A A对立事件或逆事件。记作 A ‾ \overline A A

对立事件与互斥事件的区别

A 、 B A、B AB互斥事件的区别 : A B = ϕ AB=\phi AB=ϕ

A 、 B A、B AB对立事件的区别 : A B = ϕ A ∩ B = S AB=\phi\quad A\cap B =S AB=ϕAB=S

0 x 13 0x13 0x13 频率与概率

一、频率的定义与性质

定义:在相同的条件下,进行了 n n n次试验,在这 n n n次试验中,事件 A A A发生的次数 n A n_A nA称为事件 A A A发生的频数。比值 n A n \frac{n_A}{n} nnA称为事件 A A A发生的频率,并记成 f n ( A ) f_n(A) fn(A).

性质:设 A A A是随机试验 E E E的任一事件,则

  1. 0 ≤ f n ( A ) ≤ 1 0\leq f_n(A)\leq 1 0fn(A)1;
  2. f ( S ) = 1 ,   f ( ϕ ) = 0 f(S)=1,\ f(\phi)=0 f(S)=1, f(ϕ)=0
  3. A 1 , A 2 , . . . A k A_1,A_2,...A_k A1,A2,...Ak是两两互不相同的事件,则 f ( A 1 ∪ A 2 ∪ . . . ∪ A k ) = f n ( A 1 ) + f n ( A 2 ) + . . . + f n ( A k ) f(A_1\cup A_2\cup ...\cup A_k)=f_n(A_1)+f_n(A_2)+...+f_n(A_k) f(A1A2...Ak)=fn(A1)+fn(A2)+...+fn(Ak)

推论

  1. 频率具有随机波动性,即对于同样的 n n n,所得到的 f f f不一定相同;
  2. n n n较小时频率 f f f的随机波动幅度较大,但随 n n n的增大频率 f f f呈现出稳定性
  3. 频率趋于稳定值,这个问鼎值从本质上反映了事件在试验中出现可能性的大小,它就是事件的统计概率

二、频率的定义与性质

定义

E E E是随机试验, S S S是它的样本空间。对于 E E E的每一事件 A A A赋予一个实数,记为 P ( A ) P(A) P(A),称为事件 A A A的概率,如果集合函数 P ( ⋅ ) P(·) P()满足下列条件

  1. 非负性:对于每一个事件 A A A,有 P ( A ) ≥ 0 P(A)\geq 0 P(A)0
  2. 规范性:对于必然事件 S S S,有 P ( S ) = 1 P(S)= 1 P(S)=1
  3. 可列可加性:设 A 1 , A 2 , … A_1,A_2,… A1,A2,是两两互不相容的事件,即对于 i ≠ j , A i A j , = ϕ , i , j = 1 , 2 , … , i≠ j, A_iA_j, = \phi,i, j = 1,2,…, i=j,AiAj,=ϕ,i,j=1,2,,则有
    P ( A 1 ∪ A 2 ∪ … ) = P ( A 1 ) + P ( A 2 ) + … P(A_1\cup A_2\cup …)=P(A_1)+ P(A_2)+… P(A1A2)=P(A1)+P(A2)+ 概率的可列可加性

性质

  1. P ( ϕ ) = 0 P(\phi )=0 P(ϕ)=0 不可能事件概率为0,概率为0的事件不一定是不可能事件
  2. A 1 , A 2 , . . . A n A_1,A_2,...A_n A1,A2,...An是两两互不相同的时间则有 P ( A 1 ∪ A 2 ∪ … A n ) = P ( A 1 ) + P ( A 2 ) + … + P ( A n ) P(A_1\cup A_2\cup …A_n)=P(A_1)+ P(A_2)+…+P(A_n) P(A1A2An)=P(A1)+P(A2)++P(An)
  3. A , B A,B AB为两个事件,且 A ⊂ B A\subset B AB P ( A ) ≤ P ( B ) , P ( B − A ) = P ( B ) − P ( A ) P(A)\leq P(B),P(B-A)=P(B)-P(A) P(A)P(B),P(BA)=P(B)P(A)
  4. 对于任一事件 A , P ( A ) ≤ 1 A,P(A)\leq 1 A,P(A)1
  5. A ‾ \overline A A A A A的对立事件,则 P ( A ‾ ) = 1 − P ( A ) P(\overline A)=1-P(A) P(A)=1P(A)
  6. (加法公式)对于任意两事件 A , B A,B A,B P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\cup B)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)
  7. 对于任意两事件 A , B A,B A,B P ( A − B ) = P ( A ) − P ( A B ) P(A-B)=P(A)-P(AB) P(AB)=P(A)P(AB)

公式小结

  1. P ( A ∪ B ) = p ( A ) + P ( B ) − P ( A B ) P(A\cup B)=p(A)+P(B)-P(AB) P(AB)=p(A)+P(B)P(AB)
  2. P ( A − B ) = P ( A ) − P ( A B ) P(A-B)=P(A)-P(AB) P(AB)=P(A)P(AB)
  3. P ( A ‾ ) = 1 − P ( A ) P(\overline A)=1-P(A) P(A)=1P(A)

0 x 14 0x14 0x14 等可能概型(古典概型)——排列组合的应用

一、等可能概型

定义

  1. 试验的样本空间只包含有限个元素;

  2. 试验中每个基本事件发生的可能性相同
    具有以上两个特点的试验称为等可能概型或古典概型。

古典概型中事件概率的计算公式

设试验 E E E的样本空间 S S S n n n个样本点构成, A A A E E E的任意一个事件,且包含 m m m个样本点,则事件 A A A出现的概率记为:
P ( A ) = m n = A 所 包 含 样 本 点 的 个 数 样 本 点 总 数 P(A)=\frac{m}{n}=\frac{A所包含样本点的个数}{样本点总数} P(A)=nm=A
称此为概率的古典定义

古典概型的经典模型

盒中取球问题
  1. 有放回的取球

设盒中有N个球,其中有M个红球,从中有放回的任抽n个球,则这n个球中恰有k个红球的概率是
P = C n k M k ( N − M ) n − k N n = C n k ( M N ) k ( N − M N ) n − k P=C_n^{k}\frac{M^k(N-M)^{n-k}}{N^n}=C_n^{k}(\frac{M}{N})^k(\frac{N-M}{N})^{n-k} P=CnkNnMk(NM)nk=Cnk(NM)k(NNM)nk
称为“二项分布模型”,此类试验称为“贝努里概型”。

  1. 无放回的取球

设盒中有 N N N个球,其中有 M M M个红球,从中不放回的任抽 n n n个球,则这 n n n个球中恰有 k k k个红球的概率是
P = C M k C N − M n − k C N n P=\frac{C_M^kC_{N-M}^{n-k}}{C_N^n} P=CNnCMkCNMnk
称为"超几何分布模型",可应用于抽签、取数、选人、产品抽样等类似场景

分球入盒问题

n n n个可分辨的球随机地放入 N ( N ≥ n ) N(N\geq n) N(Nn)个盒子,试求:

  1. 指定的 n n n个盒子各有一球的概率;
  2. 恰有 n n n个盒子各有一球的概率。(设盒子的容量不限)

由于每个球都可以放入N个盒子中的任一个,故有 N ∗ N ∗ . . . ∗ N = N n N*N*...*N=N^n NN...N=Nn种不同的放法。

  1. 指定的 n n n个盒子各有一球,共有 n ( n − 1 ) ( n − 2 ) . . . 1 = n ! n(n-1)(n-2)...1=n! n(n1)(n2)...1=n!种可能的放法,于是
    P ( A ) = n ! N n P(A)=\frac{n!}{N^n} P(A)=Nnn!

  2. 恰有 n n n个盒子各有一球,共有 C N n A n n C_N^nA_n^n CNnAnn可能的放法,于是
    P ( B ) = n ! C N n N n = A N n N n P(B)=\frac{n!C_N^n}{N^n}=A_N^nN^n P(B)=Nnn!CNn=ANnNn

分组问题
  1. 无序分组问题

一般地,把 n n n个元素随机地分成无序的 m m m ( n > m ) (n>m) (n>m),要求每组 k k k个元素,共有分法:
C n k C n − k k . . . C n − m k k m ! = n ! ( k ! ) m m ! \frac{C_n^kC_{n-k}^k...C_{n-mk}^k}{m!}=\frac{n!}{(k!)^mm!} m!CnkCnkk...Cnmkk=(k!)mm!n!

  1. 有序分组问题

    一般地,把 n n n个元素随机地分成有序的 m m m ( n > m ) (n>m) (n>m),要求第 i i i组恰有 n n n;个元素 ( i = 1 , … m ) (i=1,…m) (i=1,m),共有分法:
    C n n 1 C n − n 1 n 2 . . . C n m n m = n ! n 1 ! . . . n m ! C_n^{n_1}C_{n-n_1}^{n_2}...C_{n_m}^{n_m}=\frac{n!}{n_1!...n_m!} Cnn1Cnn1n2...Cnmnm=n1!...nm!n!

二、几何概型

定义

当随机试验的样本空间是某个区域,并且任意一点落在度量(长度、面积、体积)相同的子区域是等可能的,则事件A的概率可定义为
P ( A ) = S A S P(A)=\frac{S_A}{S} P(A)=SSA
(其中 S S S是样本空间的度量, S S S是构成事件 A A A的子区域的度量.)这样借助于几何上的度量来合理规定的概率称为几何概型.
说明 当古典概型的试验结果为连续无穷多个时,就归结为几何概型.

什么是几何概型,与古典概型有什么区别?

当随机试验的样本空间是某个区域,并且任意一点落在度量 (长度、面积、体积)相同的子区域是等可能的,并且借助几何上的度量来合理规定的概率成为几何概型。

如果每个事件发生的概率只与构成该事件区域的长度(面积或体积或度数)成比例,则称这样的概率模型为几何概率模型,简称为几何概型。

古典概型与几何概型的主要区别在于:几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果是无限个

请你举出一个几何概型试验的例子。

在半径为1的圆内任意取两点构成一条弦,求弦长度大于等于 3 \sqrt{3} 3 的概率。(Bertrand问题的一种理解)

请思考蒲丰是如何通过投针实验计算圆周率的。平面上画有等距离为a(a>0)的一些平行直线,现向此平面任意投掷一根长为b( b<a )的针,试求针与某一平行直线相交的概率,并以此求出圆周率计算公式。

概率 p = 2 b π a p=\frac{2b}{\pi a} p=πa2b,故 π = 2 b p a \pi = \frac{2b}{pa} π=pa2b

0 x 15 0x15 0x15 条件概率

一、条件概率

定义

A , B A,B AB是两个事件,且 P ( A ) > 0 P(A)>0 P(A)>0,称 P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)

为在事件 A A A发生的条件下事件 B B B发生的条件概率.

同理可得 P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B)=\frac{P(AB)}{P(B)} P(AB)=P(B)P(AB)

为事件 B B B发生的条件下事件 A A A发生的条件概率.

性质

  1. 非负性: P ( A ∣ B ) ≥ 0 P(A|B)\geq 0 P(AB)0
  2. 规范性: P ( S ∣ B ) = 1 , P ( ϕ ∣ B ) = 0 P(S|B)=1,P(\phi|B)=0 P(SB)=1,P(ϕB)=0;
  3. P ( A 1 ∪ A 2 ∣ B ) = P ( A 1 ∣ B ) + P ( A 2 ∣ B ) − P ( A 1 A 2 ∣ B ) P(A_1\cup A_2|B)=P(A_1|B)+P(A_2|B)-P(A_1A_2|B) P(A1A2B)=P(A1B)+P(A2B)P(A1A2B)
  4. P ( A ∣ B ) = 1 − P ( A ‾ ∣ B ) P(A|B)=1-P(\overline A|B) P(AB)=1P(AB)
  5. 可列可加性:设 A 1 , A 2 , . . . A_1,A_2,... A1,A2,...是两两不相容的事件,则有 P ( ∪ i = 1 ∞ A i ∣ B ) = ∑ i = 1 ∞ P ( A i ∣ B ) P(\cup_{i=1}^{∞}A_i|B)=\sum_{i=1}^{∞}P(A_i|B) P(i=1AiB)=i=1P(AiB)

二、乘法定理

P ( A ) > 0 P(A)>0 P(A)>0,则有 P ( A B ) = P ( B ∣ A ) P ( A ) P(AB)=P(B|A)P(A) P(AB)=P(BA)P(A)

A , B , C A,B,C A,B,C,为事件,且 P ( A B ) > 0 P(AB)>0 P(AB)>0,则有 P ( A B C ) = P ( C ∣ A B ) P ( B ∣ A ) P ( A ) P(ABC)=P(C|AB)P(B|A)P(A) P(ABC)=P(CAB)P(BA)P(A)

推广

A 1 , A 2 , . . . A n − 1 A_1,A_2,...A_{n-1} A1,A2,...An1为n个事件, n ≥ 2 n\geq 2 n2,且 P ( A 1 A 2 . . . A n − 1 ) > 0 P(A_1A_2...A_{n-1})>0 P(A1A2...An1)>0则有
P ( A 1 A 2 . . . A n ) = P ( A n ∣ A 1 A 2 . . . A n − 1 ) ∗ P ( A n − 1 ∣ A 1 A 2 . . . A n − 2 ) ∗ . . . ∗ P ( A 2 ∣ A 1 ) ∗ P ( A 1 ) P(A_1A_2...A_n)=\\P(A_n|A_1A_2...A_{n-1})*P(A_{n-1}|A_1A_2...A_{n-2})*...*P(A_{2}|A_1)*P(A_1) P(A1A2...An)=P(AnA1A2...An1)P(An1A1A2...An2)...P(A2A1)P(A1)

三、全概率公式与贝叶斯公式

样本空间的划分

定义

S S S为试验 E E E的样本空间, B 1 , B 2 , … , B n B_1,B_2,…,B_n B1,B2,,Bn为E的一组事件,若

  1. B i B j = ϕ , i ≠ j , i , j = 1 , 2 , . . . , n B_iB_j=\phi,i≠j,i,j=1,2,...,n BiBj=ϕ,i=j,i,j=1,2,...,n
  2. B 1 ∪ B 2 ∪ . . . ∪ B n = S B_1\cup B_2\cup ...\cup B_n=S B1B2...Bn=S

则称 B 1 , B 2 , … , B n B_1,B_2,…,B_n B1,B2,,Bn为样本空间 S S S的一个划分

全概率公式

定理

设试验 E E E的样本空间为 S S S, A A A E E E的事件, B 1 , B 2 , … , B n B_1,B_2,…,B_n B1,B2,,Bn S S S的一个划分,且 P ( B 1 ) > 0 ( i = 1 , 2 , … , n ) P(B_1)> 0(i =1, 2,…,n) P(B1)>0(i=1,2,,n),则
P ( A ) = P ( A ∣ B 1 ) P ( B 1 ) + P ( A ∣ B 2 ) P ( B 2 ) + . . . + P ( A ∣ B n ) P ( B n ) P(A)=P(A|B_1)P(B_1)+P(A|B_2)P(B_2)+...+P(A|B_n)P(B_n) P(A)=P(AB1)P(B1)+P(AB2)P(B2)+...+P(ABn)P(Bn)

说明

全概率公式的主要用处在于它可以将一个复杂事件的概率计算问题,分解为若干个简单事件的概率计算问题,最后应用概率的可加性求出最终结果(加权平均).

贝叶斯公式

定理

设试验 E E E的样本空间为 S S S. A A A E E E的事件, B 1 , B 2 , … , B n B_1,B_2,…,B_n B1,B2,,Bn S S S的一个划分,且 P ( A ) > 0 , P ( B , ) > 0 , ( i = 1 , 2 , … , n ) P(A)>0, P(B,)>0,(i=1,2,…,n) P(A)>0,P(B,)>0,(i=1,2,,n),则
P ( B i ∣ A ) = P ( A ∣ B i ) P ( B i ) ∑ j = 1 n P ( A ∣ B j ) P ( B j ) , i = 1 , 2 , . . . , n P(B_i|A)=\frac{P(A|B_i)P(B_i)}{\sum_{j=1}^{n}P(A|B_j)P(B_j)},i=1,2,...,n P(BiA)=j=1nP(ABj)P(Bj)P(ABi)P(Bi),i=1,2,...,n

0 x 16 0x16 0x16 独立性

一、时间的相互独立性

定义

A , B A,B A,B是两事件,如果满足等式 P ( A B ) = P ( A ) P ( B ) P( AB ) =P(A) P(B) P(AB)=P(A)P(B)则称事件 A , B A,B A,B相互独立,简称 A , B A,B A,B独立.

事件 A A A与事件 B B B相互独立,是指事件 A A A的发生与事件 B B B发生的概率无关.

三事件两两相互独立的概念

定义

A , B , C A,B,C A,B,C是三个事件,如果满足等式
{ P ( A B ) = P ( A ) P ( B ) P ( B C ) = P ( B ) P ( C ) P ( A C ) = P ( A ) P ( C ) \left\{ \begin{aligned} P(AB)=P(A)P(B) \\ P(BC)=P(B)P(C) \\ P(AC)=P(A)P(C) \end{aligned} \right. P(AB)=P(A)P(B)P(BC)=P(B)P(C)P(AC)=P(A)P(C)
则称事件 A , B , C A, B,C A,B,C两两相互独立

三个事件相互独立则三个事件两两相互独立,三个事件两两相互独立不一定三个事件相互独立。

同理可以推广到n个事件

二、几个重要定理

定理一

A , B A,B A,B是两事件,且 P ( A ) > 0 P(A)>0 P(A)>0.若 A , B A,B A,B相互独立,则 P ( B ∣ A ) = P ( B ) P(B|A)= P(B) P(BA)=P(B).反之亦然.

定理二

A , B A,B A,B相互独立,则下列各对事件, A ‾ \overline A A B B B, A A A B ‾ \overline B B, A ‾ \overline A A B ‾ \overline B B也相互独立.

两个结论

  1. 若事件 A , A , … , A n ( n ≥ 2 ) A, A,…,An (n ≥2) A,A,,An(n2)相互独立,则其中任意 k ( 2 ≤ k ≤ n ) k (2≤k \leq n) k(2kn)个事件也是相互独立.
  2. n n n个事件 A 1 , A 2 , … , A n ( n ≥ 2 ) A_1,A_2,…,A_n(n≥2) A1A2,,An(n2)相互独立,则将 A 1 , A 2 , … , A n A_1,A_2,…,A_n A1,A2,An中任意多个事件换成它们的对立事件,所得的 n n n个事件仍相互独立.
A、B互斥A、B相互独立A、B、C相互独立
判定公式 A ∩ B = ϕ A\cap B=\phi AB=ϕ$P(AB)=P(B)\ \ \ P(B
概率意义 P ( A B ) = 0 P(AB)=0 P(AB)=0 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B) { P ( A B ) = P ( A ) P ( B ) P ( B C ) = P ( B ) P ( C ) P ( A C ) = P ( A ) P ( C ) P ( A B C ) = P ( A ) P ( B ) P ( C ) \left\{\begin{aligned}P(AB)=P(A)P(B) \\P(BC)=P(B)P(C) \\P(AC)=P(A)P(C)\\P(ABC)=P(A)P(B)P(C)\end{aligned}\right. P(AB)=P(A)P(B)P(BC)=P(B)P(C)P(AC)=P(A)P(C)P(ABC)=P(A)P(B)P(C)

第二章 随机变量及其分布

0 x 21 0x21 0x21 随机变量

一、随机变量的引入

引入目的

为了更方便的用数学分析的方法来研究随机现象,为了便于数学上的推导和计算,将任意的随机事件数量化,把一些非数量表示的随机事件用数字来表示。

eg

抛掷骰子,观察出现的点数,则有样本空间 S = 1 , 2 , 3 , 4 , 5 , 6 S={1,2,3,4,5,6} S=1,2,3,4,5,6,样本点就是数量 X ( e ) = e ⇒ X ( i ) = i ( i = 1 , 2 , 3 , 4 , 5 , 6 ) ⇒ P { X = i } = 1 6 X(e)=e\Rightarrow X(i)=i \quad(i=1,2,3,4,5,6)\Rightarrow P\{X=i\}=\frac{1}{6} X(e)=eX(i)=i(i=1,2,3,4,5,6)P{X=i}=61

二、随机变量的概念

1. 定义

E E E是随机试验,它的样本空间是 S = { e } S=\{e\} S={e}。如果对于每一个 e ∈ S e\in S eS,有一个实数 X ( e ) X(e) X(e)与之对应,这样就得到一个定义在 S S S上的单值实值函数 X ( e ) X(e) X(e),称 X ( e ) X(e) X(e)为随机变量。

2. 随机变量与普通的函数不同

随机变量是一个函数,但它与普通的函数有着本质的差别。

普通函数是定义在实数轴上的,而随机变量是定义在样本空间上的(样本空间的元素不一定是实数)。

3. 随机变量的取值具有一定的概率规律

随机变量随着试验的结果不同而取不同的值,由于试验的各个结果的出现具有一定的概率,因此随机变量的取值也有一定的概率规律。

4. 随机变量与随机事件的关系

随机事件包容在随机变量这个范围更广的概念之内。

即随机事件是从静态的观点来研究随机现象,而随机变量则是从动态的观点来研究随机现象。
A = X − 1 ( [ a , b ] ) = { s ∈ S ∣ X ( s ) ∈ [ a , b ] } ⊆ S A = X − 1 ( { a } ) = { s ∈ S ∣ X ( s ) = a } ⊆ s A=X^{-1}([a,b])=\{s\in S|X(s)\in [a,b]\} \subseteq S\\A=X^{-1}(\{a\})=\{s\in S|X(s)=a\}\subseteq s A=X1([a,b])={sSX(s)[a,b]}SA=X1({a})={sSX(s)=a}s

5. 随机变量的分类

(1)离散型

随机变量所取的可能值是有限多个或无限可列个,叫做离散型随机变量。

eg:投掷一个骰子出现的点数。

(2)连续型

随机变量所取的可能值可以连续地充满某个区间,叫做连续型随机变量。

eg:灯泡的寿命

0 x 22 0x22 0x22 离散型随机变量及其分布律

一、离散型随机变量的分布律

定义

设离散型随机变量 X X X所有可能取的值为 X k ( k = 1 , 2 , … ) X_k (k =1,2,…) Xk(k=1,2,) X X X取各个可能值的概率,即事件 { X = x k } \{X =x_k \} {X=xk}的概率,为
P { X = X k } = P k , k = 1 , 2 , … . P\{X =X_k\} =P_k, k =1,2,…. P{X=Xk}=Pk,k=1,2,.
称此为离散型随机变量 X X X的分布律。

说明

(1) p k ≥ 0 , k = 1 , 2 , . . . p_k\geq 0,k=1,2,... pk0,k=1,2,...

(2) ∑ k = 1 ∞ p k = 1 \sum_{k=1}^{∞}p_k=1 k=1pk=1

同理可以表示为

X X X x 1 x_1 x1 x 2 x_2 x2 x n x_n xn
p k p_k pk p 1 p_1 p1 p 2 p_2 p2 p n p_n pn

二、常见离散型随机变量的概率分布

1. 两点分布

设随机变量 X X X只可能取 0 0 0 1 1 1两个值,它的分布律为

X X X 0 0 0 1 1 1
p k p_k pk 1 − p 1-p 1p p p p

P { X = k } = p k ( 1 − p ) 1 − k , k = 0 , 1 ( 0 < p < 1 ) P\{X=k\}=pk(1-p)1-k , k=0,1( 0<p<1) P{X=k}=pk(1p)1k,k=0,1(0<p<1)

则称 X X X服从 (0—1) 分布或 两点 分布.

eg:抛硬币,正反面出现情况

两点分布是最简单的一种分布,任何一个只有两种可能结果的随机现象就是两点分布。

2. 等可能分布

如果随机变量 X X X的分布律为

X X X a 1 a_1 a1 a 2 a_2 a2 a n a_n an
p k p_k pk 1 n \frac{1}{n} n1 1 n \frac{1}{n} n1 1 n \frac{1}{n} n1

其中 ( a i ≠ a j ) , ( i ≠ j ) (a_i\ne a_j),(i\ne j) (ai=aj),(i=j) 则称 X X X服从等可能分布。

eg:抛掷骰子并记录出现的点数为随机变量

3. 二项分布

(1) 重复独立试验

将试验 E E E重复进行 n n n次,若各次试验的结果互不影响,即每次试验结果出现的概率都不依赖于其它各次试验的结果,则称这 n n n次试验是相互独立的,或称为 n n n次重复独立试验

(2) n n n重伯努利试验

设试验 E E E只有两个可能结果: A A A A ‾ \overline A A,则称 E E E为伯努利试验.

P ( A ) = p ( 0 < p < 1 ) P(A)=p(0<p<1) P(A)=p(0<p<1),此时 P ( A ‾ ) = 1 − p P(\overline A)=1-p P(A)=1p

E E E独立地重复地进行 n n n次,则称这一串重复的独立试验为 n n n重伯努利试验.

(3) 二项概率公式

X X X表示 n n n重伯努利试验中事件 A A A发生的次数,则 X X X所有可能取的值为 0 , 1 , 2 , 3 , . . . , n 0,1,2,3,...,n 0,1,2,3,...,n

X = k   ( 0 ≤ k ≤ n ) X=k\ (0\leq k\leq n) X=k (0kn) 时,即 A A A n n n次试验中发生了 k k k次。

A A A n n n次试验中发生 k k k次T的方式共有 C n k C_{n}^{k} Cnk种,且两两互不相容。

A A A发生的概率为 p p p,则 A ‾ \overline A A的概率为 1 − p 1-p 1p,记为 q q q

其分布律为

x x x 0 0 0 1 1 1 k k k n n n
p k p_k pk q n q^n qn C n 1 p q n − 1 C_{n}^{1}pq^{n-1} Cn1pqn1 C n k p q n − k C_{n}^{k}pq^{n-k} Cnkpqnk C n n p q n − n C_{n}^{n}pq^{n-n} Cnnpqnn

称这样的分布为二项分布,记为 X ∼ b ( n , p ) X\sim b(n,p) Xb(n,p).

二项分布当 n = 1 n=1 n=1时,即为两点分布。

(4) 泊松分布

设随机变量所有可能取的值为 0 , 1 , 2 , … , 0,1,2,…, 0,1,2,,而取各个值的概率为 P { X = k } = λ k e − λ k ! , k = 0 , 1 , 2 , … , P\{X =k\}=\frac{\lambda^ke^{-\lambda}}{k!}, k =0,1,2,…, P{X=k}=k!λkeλ,k=0,1,2,,其中 λ > 0 \lambda>0 λ>0是常数.则称 X X X服从参数为 λ \lambda λ的泊松分布,记为 X ∼ π ( λ ) X\sim\pi(\lambda) Xπ(λ)

(5) 几何分布

若随机变量 X X X的分布律为 p + q = 1 p+q=1 p+q=1

X X X12k
p k p_k pk p p p q p qp qp q k − 1 p q^k-1p qk1p

则称 X X X服从几何分布。

离散型随机变量常见分布

分布标记方法参数分布律实验
两点 0 < p < 1 0<p<1 0<p<1 P { X = k } = p k ( 1 − p ) 1 − k , k = 0 , 1 P\{X=k\}=p^k(1-p)^{1-k},k=0,1 P{X=k}=pk(1p)1k,k=0,1只有两个结果的实验
二项 X ∼ b ( n , p ) X\sim b(n,p) Xb(n,p) n ≥ 1 0 < p < 1 n\geq1\\0<p<1 n10<p<1 P ( X = k ) = C n k p k q n − k , k = 0 , 1 , 2... P(X=k)=C_{n}^{k}p^kq^{n-k},k=0,1,2... P(X=k)=Cnkpkqnk,k=0,1,2...贝努里实验
泊松 X ∼ π ( λ ) X\sim\pi(\lambda) Xπ(λ) λ > 0 \lambda>0 λ>0 P { X = k } = λ k e − λ k ! P\{X=k\}=\frac{\lambda^ke^{-\lambda}}{k!} P{X=k}=k!λkeλ排队问题、某段时间意外发生的次数
几何 0 < p < 1 0<p<1 0<p<1 P { X = k } = ( 1 − p ) k − 1 p , k = 1 , 2 , . . . P\{X=k\}=(1-p)^{k-1}p,k=1,2,... P{X=k}=(1p)k1p,k=1,2,...实验“首次成功”问题

0 x 23 0x23 0x23 随机变量的分布函数

一、分布函数的概念

  1. 概念的引入

对于随机变量 X X X,我们不仅要知道 X X X取哪些值,要知道 X X X取这些值的概率;而且更重要的是想知道 X X X在任意有限区间 ( a , b ) (a,b) (a,b)内取值的概率。

  1. 定义

X X X是一随机变量, x x x是任意实数函数 F ( x ) = P { X ≤ x } = ∑ x i ≤ x p k F(x)=P\{X\leq x\}=\sum_{x_i\leq x}p_k F(x)=P{Xx}=xixpk称为随机变量 X X X的分布函数。

  1. 几何意义

如果将 X X X看成是数轴上的随机点的坐标,那么,分布函数 F ( x ) F(x) F(x) x x x处的函数值就表示 X X X落在区间 [ − ∞ , x ] [-∞,x] [,x]上的概率。

二、分布函数的性质

(1) 0 ≤ F ( x ) ≤ 1 , x ∈ ( − ∞ , ∞ ) 0\leq F(x)\leq 1,\quad x\in (-∞,∞) 0F(x)1,x(,)

(2) F ( x 1 ) ≤ F ( x 2 ) , ( x 1 < x 2 ) F(x_1)\leq F(x_2),(x_1<x_2) F(x1)F(x2),(x1<x2)

(3) F ( − ∞ ) = l i m x → − ∞ F ( x ) = 0 ,   F ( ∞ ) = l i m x → ∞ F ( x ) = 1 F(-∞)=lim_{x\rightarrow-∞}F(x)=0,\ F(∞)=lim_{x\rightarrow∞}F(x)=1 F()=limxF(x)=0, F()=limxF(x)=1

(4) l i m x → x 0 + F ( x ) = F ( x 0 ) , ( − ∞ < x 0 < ∞ ) lim_{x\rightarrow x_0^+}F(x)=F(x_0),(-∞<x_0<∞) limxx0+F(x)=F(x0),<x0<

重要公式

(1) P { a < X ≤ b } = F ( b ) − F ( a ) P\{a<X\leq b\}=F(b)-F(a) P{a<Xb}=F(b)F(a)

(2) P { X > a } = 1 − F ( a ) P\{X>a\}=1-F(a) P{X>a}=1F(a)

0 x 24 0x24 0x24 连续型随机变量及其概率密度

一、概率密度的概念与性质

1. 定义

如果对于随机变量 X X X的分布函数 F ( x ) F(x) F(x),存在非负函数,使对于任意实数 x x x F ( x ) = ∫ − ∞ x f ( t ) d t F(x)=\int_{-∞}^{x}f(t)dt F(x)=xf(t)dt,则称 X X X为连续型随机变量,其中 f ( x ) f(x) f(x)称为 X X X的概率密度函数,简称概率密度。

2. 性质

  1. f ( x ) ≥ 0 ; f(x)\geq 0; f(x)0;
  2. ∫ − ∞ + ∞ f ( x ) d x = 1 F ( ∞ ) = 1 \int_{-∞}^{+∞}f(x)dx=1\quad F(∞)=1 +f(x)dx=1F()=1
  3. P ( x 1 < X ≤ x 2 ) = F ( x 2 ) − F ( x 1 ) = ∫ x 1 x 2 f ( x ) d x P(x_1<X\leq x_2)=F(x_2)-F(x_1)=\int_{x_1}^{x_2}f(x)dx P(x1<Xx2)=F(x2)F(x1)=x1x2f(x)dx
  4. f ( x ) f(x) f(x)在点 x x x处连续,则有 F ′ ( x ) = f ( x ) F^{'}(x)=f(x) F(x)=f(x)
  5. 连续型随机变量取值落在某一区间的概率与区间的开闭无关。
  6. 对于离散型随机变量 P ( X = a ) = 0 → ( X = a ) 是 不 可 能 事 件 P(X=a)=0\rightarrow(X=a)是不可能事件 P(X=a)=0(X=a),但连续性不行。

二、常见连续型随机变量的分布

1. 均匀分布

定义

设连续性随机变量 X X X具有概率密度
f ( x ) = { 1 b − a , a < x < b 0 , o t h e r f(x)=\left\{\begin{aligned}\frac{1}{b-a},\quad a<x<b\\0,\quad\quad\quad\quad other\end{aligned}\right. f(x)=ba1,a<x<b0,other
则称 X X X在区间 ( a , b ) (a,b) (a,b)区间上服从均匀分布,记为 X ∼ U ( a , b ) X\sim U(a,b) XU(a,b)

意义

在区间 ( a , b ) (a,b) (a,b)上服从均匀分布的随机变量 X X X,落在区间 ( a , b ) (a,b) (a,b)中任意等长度的子区间内的可能性是相同的。

分布函数

F ( x ) = { 0 , x < a x − a v − a , a ≤ x < b 1 , x ≥ b F(x)=\left\{\begin{aligned}0,\quad\quad\quad\quad\quad\quad x<a\\\frac{x-a}{v-a},\quad\quad a\leq x<b\\1,\quad\quad\quad\quad\quad\quad x\geq b\end{aligned}\right. F(x)=0,x<avaxa,ax<b1,xb

2. 指数分布

定义

设连续型随机变量 X X X的概率密度为
f ( x ) = { 1 θ e − x θ , x > 0 0 , x ≤ 0 f(x)=\left\{\begin{aligned}\frac{1}{\theta}e^{-\frac{x}{\theta}},\quad\quad x>0\\0,\quad\quad x\leq 0\end{aligned}\right. f(x)=θ1eθx,x>00,x0
其中 θ > 0 \theta>0 θ>0为常数,则称 X X X服从参数为 θ \theta θ的指数分布。

分布函数

F ( x ) = { 1 − e − x θ , x > 0 0 , x ≤ 0 F(x)=\left\{\begin{aligned}1-e^{-\frac{x}{\theta}},\quad x>0\\0,\quad\quad\quad\quad x\leq 0 \end{aligned} \right. F(x)={1eθx,x>00,x0

指数分布重要性质:无记忆性

3. 正态分布 / 高斯分布

定义

设连续型随机变量 X X X的概率密度为
f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , − ∞ < x < + ∞ f(x)=\frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma ^2}},-∞<x<+∞ f(x)=2πσ 1e2σ2(xμ)2,<x<+
其中 μ   σ ( σ > 0 ) \mu\ \sigma(\sigma>0) μ σ(σ>0)为常数,则称 X X X服从参数为 μ , σ \mu,\sigma μ,σ的正态分布或高斯分布,记为 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2).

几何特征
  1. 曲线关于 x = μ x=\mu x=μ对称;
  2. x = μ x=\mu x=μ时, f ( x ) f(x) f(x)取得最大值 1 2 π σ \frac{1}{\sqrt{2\pi\sigma}} 2πσ 1
  3. x → ± ∞ x\rightarrow \pm∞ x±时, f ( x ) → 0 f(x)\rightarrow 0 f(x)0
  4. 曲线在 x = μ ± ∞ x=\mu\pm∞ x=μ±处有拐点
  5. 曲线以 x x x轴为渐近线
  6. 当固定 σ \sigma σ,改变 μ \mu μ的大小时, f ( x ) f(x) f(x)图形的形状不变,只是沿着x轴作平移变换
  7. 当固定 μ \mu μ,改变 σ \sigma σ的大小时, f ( x ) f(x) f(x)图形的对乘舟不变,而形状在变, σ \sigma σ越小 图形越高; σ \sigma σ越大,图形越矮
分布函数

F ( x ) = 1 2 π σ ∫ − ∞ x e − ( t − μ ) 2 2 σ 2 d t F(x)=\frac{1}{\sqrt{2\pi\sigma}}\int_{-∞}^{x}e^{-\frac{(t-\mu)^2}{2\sigma ^2}}dt F(x)=2πσ 1xe2σ2(tμ)2dt

引理

X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2),则 Z = X − μ σ ∼ N ( 0 , 1 ) Z=\frac{X-\mu}{\sigma}\sim N(0,1) Z=σXμN(0,1)

学习总结常见连续型分布的相关知识,完成下表。

$ \ $标记方法概率密度函数及图像参数分布函数及图像试验场景
均匀分布 X ∼ U ( a , b ) X\sim U(a,b) XU(a,b)$ f(x)=\left{\begin{aligned}\frac{1}{b-a},\quad a<x<b\0,\quad\quad\quad\quad other\end{aligned}\right.$连续型随机变量在这里插入图片描述 F ( x ) = { 1 − e − x θ , x > 0 0 , x ≤ 0 F(x)=\left\{\begin{aligned}1-e^{-\frac{x}{\theta}},\quad x>0\\0,\quad\quad\quad\quad x\leq 0 \end{aligned} \right. F(x)={1eθx,x>00,x0落在各点概率相同
指数分布X~$ f(x)=\left{\begin{aligned}\frac{1}{\theta}e^{-\frac{x}{\theta}},\quad\quad x>0\0,\quad\quad x\leq 0\end{aligned}\right.$连续型随机变量在这里插入图片描述 F ( x ) = { 1 − e − x θ , x > 0 0 , x ≤ 0 F(x)=\left\{\begin{aligned}1-e^{-\frac{x}{\theta}},\quad x>0\\0,\quad\quad\quad\quad x\leq 0 \end{aligned} \right. F(x)={1eθx,x>00,x0某些元件或设备的寿命服从指数分布,例如无线电元件的寿命、 电力设备的寿命、动物的寿命等都服从指数分布.
正态分布 X ∼ N ( μ , σ 2 ) X\sim N(\mu , \sigma ^2) XN(μ,σ2) f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , − ∞ < x < + ∞ f(x)=\frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma ^2}},-∞<x<+∞ f(x)=2πσ 1e2σ2(xμ)2,<x<+连续型随机变量在这里插入图片描述 F ( x ) = 1 2 π σ ∫ − ∞ x e − ( t − μ ) 2 2 σ 2 d t F(x)=\frac{1}{\sqrt{2\pi\sigma}}\int_{-∞}^{x}e^{-\frac{(t-\mu)^2}{2\sigma ^2}}dt F(x)=2πσ 1xe2σ2(tμ)2dt正态分布是最常见最重要的一种分布,例如测量误差,人的生理特征尺寸如身高、体重等;正常情况下生产的产品尺寸:直径、长度、重量、高度等都近似服从正态分布

0 x 25 0x25 0x25 随机变量函数的分布

一、离散型随机变量的函数分布

如果 X X X是离散型随机变量,其函数 Y = g ( X ) Y=g(X) Y=g(X)也是离散型随机变量。若X的分布律为

X X X x 1 x_1 x1 x 2 x_2 x2 x k x_k xk
P k P_k Pk p 1 p_1 p1 p 2 p_2 p2 p k p_k pk

Y = g ( X ) Y=g(X) Y=g(X)的分布律为

Y = g ( X ) Y=g(X) Y=g(X) g ( x 1 ) g(x_1) g(x1) g ( x 2 ) g(x_2) g(x2) g ( x k ) g(x_k) g(xk)
P k P_k Pk p 1 p_1 p1 p 2 p_2 p2 p k p_k pk

若有 g ( x k ) g(x_k) g(xk)取值相同,则应该合并 p k p_k pk

已知离散型随机变量X的分布律 P { X = x k } = p k P\{X=x_k\}=p_k P{X=xk}=pk,总结求随机变量Y=g(X)的分布律的步骤方法。

  1. 根据Y与X的关系得到Y的可能取值
  2. 分别计算Y的不同取值的概率
  3. 归纳出Y的分布律

二、连续性随机变量的函数分布

已知连续型随机变量 X X X的概率密度 f ( x ) f(x) f(x),总结求随机变量 Y = g ( X ) Y=g(X) Y=g(X)的分概率密度函数的步骤方法。

  1. 先求分布函数
  2. 再由分布函数求概率密度

F Y ( y ) = P { Y ≤ y } = P { g ( X ) ≤ y } = ∫ g ( x ) ≤ y f x ( x ) d x , ( − ∞ < x < + ∞ ) F_Y(y)=P\{Y\leq y\}=P\{g(X)\leq y\}=\int_{g(x)\leq y}f_x{(x)}dx,\quad (-∞<x<+∞) FY(y)=P{Yy}=P{g(X)y}=g(x)yfx(x)dx,(<x<+)

正态分布随机变量线性函数服从什么分布

服从正态分布

第三章 多维随机变量及其分布

0 x 31 0x31 0x31 二维随机变量

一、二维随机变量及其分布函数

1、定义

设E是一个随机试验,它的样本空间是 S = { e } S=\{e\} S={e},设 X = X ( e ) X=X(e) X=X(e) Y = Y ( e ) Y=Y(e) Y=Y(e)是定义在S上的随机变量,由它们构成的一个向量 ( X , Y ) (X,Y ) (X,Y),叫作二维随机向量或二维随机变量。

二维随机变量 ( X , Y ) (X,Y) (X,Y)的性质不仅与 X , Y X,Y X,Y有关,而且还依赖于这两个随机变量的相互关系。

2、二维随机变量的分布函数(1)分布函数的定义

(1) 定义

( X , Y ) (X,Y) (X,Y)是二维随机变量,对于任意实数 x , y x,y x,y,二元函数: F ( X , y ) = P { ( X ≤ x ) ∩ ( Y ≤ y ) } = P { X ≤ x , Y ≤ y } F(X,y)=P\{(X≤x)\cap(Y≤y)\}=P\{X ≤x,Y≤y\} F(X,y)=P{(Xx)(Yy)}=P{Xx,Yy}称为二维随机变量 ( X , Y ) (X,Y) (X,Y)的分布函数,或称为随机变量 X X X Y Y Y的联合分布函数。

(2) 分布函数的性质
  1. F ( x , y ) F(x,y) F(x,y)是变量 x x x y y y的不减函数,即对任意的定值 y y y x 2 > x 1 x_2>x_1 x2>x1 F ( x 2 , y ) ≥ F ( x 1 , y ) F(x_2,y)\geq F(x_1,y) F(x2,y)F(x1,y) x x x同理。

  2. 0 ≤ F ( x , y ) ≤ 1 0\leq F(x,y)\leq 1 0F(x,y)1 且有:

    对任意的定值 y y y F ( − ∞ , y ) = l i m x → − ∞ F ( x , y ) = 0 F(-∞,y)=lim_{x\rightarrow-∞}F(x,y)=0 F(,y)=limxF(x,y)=0 x x x同理。

    F ( − ∞ , − ∞ ) = l i m x → − ∞ , y → − ∞ F ( x , y ) = 0 F ( + ∞ , + ∞ ) = l i m x → + ∞ , y → + ∞ = 1 F(-∞,-∞)=lim_{x\rightarrow-∞,y\rightarrow-∞}F(x,y)=0\\ F(+∞,+∞)=lim_{x\rightarrow+∞,y\rightarrow+∞}=1 F(,)=limx,yF(x,y)=0F(+,+)=limx+,y+=1

  3. F ( x , y ) = F ( x + 0 , y ) F ( x , y ) = F ( x , y + 0 ) F(x,y)=F(x+0,y)\\F(x,y)=F(x,y+0) F(x,y)=F(x+0,y)F(x,y)=F(x,y+0) F ( x , y ) F(x,y) F(x,y)关于 x x x右连续,也关于y连续。

  4. 对于任意的 ( x 1 , y 1 ) , ( x 2 , y 2 ) , x 1 < x 2 , y 1 < y 2 , p = { x 1 < X ≤ x 2 , y 1 < Y ≤ y 2 } = F ( x 2 , y 2 ) − F ( x 2 , y 1 ) + F ( x 1 , y 1 ) − F ( x 1 , y 2 ) (x_1,y_1),(x_2,y_2),x_1<x_2,y_1<y_2,\\p=\{x_1<X\leq x_2,y_1<Y\leq y_2\}\\=F(x_2,y_2)-F(x_2,y_1)+F(x_1,y_1)-F(x_1,y_2) (x1,y1),(x2,y2),x1<x2,y1<y2,p={x1<Xx2,y1<Yy2}=F(x2,y2)F(x2,y1)+F(x1,y1)F(x1,y2)

二、二维离散型随机变量

1. 定义

若二维随机变量 ( X , Y ) (X, Y) (X,Y)所取的可能值是有限对或无限可列多对,则称 ( X , Y ) (X,Y) (X,Y)为二维离散型随机变量。

2. 二维离散型随机变量的分布律

设二维离散型随机变量 ( X , Y ) (X,Y) (X,Y)所有可能取的值为 ( x i , y j ) , i , j = 1 , 2 … , (x_i,y_j) ,i, j =1, 2…, (xi,yj),i,j=1,2,
P { X = x i , Y = y i } = p i j , i , j = 1 , 2 , … , ∑ i = 1 ∞ s u m j = 1 ∞ p i j = 1 F ( x , y ) = ∑ x i ≤ x ∑ y j ≤ y p i j P\{X =x_i,Y=y_i\}=p_{ij}, i, j =1, 2,…,\\\sum_{i=1}^{∞}sum_{j=1}^{∞}p_{ij}=1\\F(x,y)=\sum_{x_i\leq x}\sum_{y_j\leq y}p_{ij} P{X=xi,Y=yi}=pij,i,j=1,2,,i=1sumj=1pij=1F(x,y)=xixyjypij

称此为二维离散型随机变量 ( X , Y ) (X,Y) (X,Y)的分布律,或随机变量 X X X Y Y Y的联合分布律。

三、二维连续型随机变量

1. 定义

对于二维随机变量 ( X , Y ) (X,Y) (X,Y)的分布函数 F ( x , y ) F(x,y) F(x,y),如果存在非负的函数 f ( x , y ) f(x,y) f(x,y)使对于任意 x , y x,y x,y
F ( X , y ) = ∫ ∞ y ∫ ∞ x f ( u , v ) d u d v F(X,y)=\int_∞^{y}\int_∞^{x}f(u,v) dudv F(X,y)=yxf(u,v)dudv
则称 ( X , Y ) (X,Y) (X,Y)是连续型的二维随机变量,函数 f ( x , y ) f(x,y) f(x,y)称为二维随机变量 ( X , Y ) (X,Y) (X,Y)的概率密度,或称为随机变量 X X X Y Y Y的联合概率密度。

2. 性质

  1. f ( x , y ) ≥ 0 f(x,y)\geq 0 f(x,y)0

  2. ∫ − ∞ + − ∞ ∫ − ∞ + − ∞ f ( x , y ) d x d y = F ( ∞ , ∞ ) = 1 \int_{-∞}^{+-∞}\int_{-∞}^{+-∞}f(x,y)dxdy=F(∞,∞)=1 ++f(x,y)dxdy=F(,)=1

  3. G G G x o y xoy xoy平面上的一个区域,点 ( X , Y ) (X,Y) (X,Y)落在 G G G内的概率为
    P { ( X , Y ) ∈ G } = ∮ G f ( x , y ) d x d y P\{(X,Y)\in G\}=\oint _Gf(x,y)dxdy P{(X,Y)G}=Gf(x,y)dxdy

  4. f ( x , y ) f(x,y) f(x,y) ( x , y ) (x,y) (x,y)连续,则有 ϑ 2 F ( x , y ) ϑ x ϑ y \frac{\vartheta^2F(x,y)}{\vartheta x\vartheta y} ϑxϑyϑ2F(x,y)

3. 说明

几何上,z = f(x,y)表示空间的一个曲面。
∫ − ∞ + − ∞ ∫ − ∞ + − ∞ f ( x , y ) d x d y = F ( ∞ , ∞ ) = 1 \int_{-∞}^{+-∞}\int_{-∞}^{+-∞}f(x,y)dxdy=F(∞,∞)=1 ++f(x,y)dxdy=F(,)=1
表示介于f(x,y)和xoy平面之间的空间区域的全部体积等于1。
P { ( X , Y ) ∈ G } = ∮ G f ( x , y ) d x d y P\{(X,Y)\in G\}=\oint _Gf(x,y)dxdy P{(X,Y)G}=Gf(x,y)dxdy
P { ( X , Y ) ∈ G } P\{(X,Y)\in G\} P{(X,Y)G}的值等于以 G G G为底,以曲面 z = f ( x , y ) z=f(x, y) z=f(x,y)为顶面的柱体体积。

四、两个常用的分布

1. 均匀分布

定义

D D D是平面上的有界区域,其面积为 S S S,若二维随机变量 ( X , Y ) (X ,Y) (X,Y)具有概率密度
f ( x , y ) = { 1 S ,     ( x , y ) ∈ D 0 , o t h e r w i s e f(x,y)=\left\{\begin{aligned}\frac{1}{S},\quad \quad \quad \ \ \ (x,y)\in D\\0,\quad\quad\quad\quad otherwise\end{aligned}\right. f(x,y)=S1,   (x,y)D0,otherwise
则称 ( X , Y ) (X, Y) (X,Y) D D D上服从均匀分布。

二维正态分布

若二维随机变量 ( X , Y ) (X,Y) (X,Y)具有概率密度

f ( x , y ) = 1 2 π σ 1 σ 2 1 − p 2 e − 1 2 ( 1 − p 2 ) [ ( x − μ 1 ) 2 2 σ 1 2 + ( y − μ 2 ) 2 2 σ 2 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 ] , − ∞ < x < + ∞ , − ∞ < y < + ∞ \Huge{f(x,y)=\frac{1}{\sqrt{2\pi}\sigma_1\sigma_2\sqrt{1-p^2}}e^{\frac{-1}{2(1-p^2)}[\frac{(x-\mu_1)^2}{2\sigma_1^2}+\frac{(y-\mu_2)^2}{2\sigma_2^2}-\frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}]},-∞<x<+∞,-∞<y<+∞} f(x,y)=2π σ1σ21p2 1e2(1p2)1[2σ12(xμ1)2+2σ22(yμ2)2σ1σ22ρ(xμ1)(yμ2)],<x<+,<y<+
其中 μ 1 , μ 2 , σ 1 , σ 2 , ρ \mu_1,\mu_2,\sigma_1,\sigma_2,\rho μ1,μ2,σ1,σ2,ρ均为常数,且 μ 1 > 0 , μ 2 > 0 , − 1 < ρ < 1 \mu_1>0,\mu_2>0,-1<\rho<1 μ1>0,μ2>0,1<ρ<1。则称 ( X , Y ) (X,Y) (X,Y)服从参数为 μ 1 , μ 2 , σ 1 , σ 2 , ρ \mu_1,\mu_2,\sigma_1,\sigma_2,\rho μ1,μ2,σ1,σ2,ρ的二维正态分布.记为 ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (X,Y)\sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho) (X,Y)N(μ1,μ2,σ12,σ22,ρ)

推广—— n n n维随机变量的概念

定义

E E E是一个随机试验,它的样本空间是 s = { e } s =\{e\} s={e},设 X 1 = X 1 ( e ) , X 2 = X 2 ( e ) … , X n = X n ( e ) X_1=X_1(e),X_2=X_2(e)…,X_n=X_n(e) X1=X1(e),X2=X2(e),Xn=Xn(e),是定义在 S S S上的随机变量,由它们构成的一个 n n n维向量 ( X 1 , X 2 , … , X n ) (X_1,X_2,…,X_n) (X1,X2,,Xn)叫做 n n n维随机向量或 n n n维随机变量。
对于任意 n n n个实数 x 1 , x 2 , … , x n x_1,x_2,…,x_n x1,x2,,xn n n n元函数 F ( x 1 , x 2 , … , x n ) = P { X 1 ≤ x 1 , X 2 ≤ x 2 , … , X n ≤ x n } F(x_1,x_2,…,x_n)=P\{X_1\leq x_1,X_2\leq x_2,…,X_n\leq x_n\} F(x1,x2,,xn)=P{X1x1,X2x2,,Xnxn}称为随机变量 ( X 1 , X 2 , … , X n ) (X_1,X_2,…,X_n) (X1,X2,,Xn)的联合分布函数。

0 x 32 0x32 0x32 边缘分布

一、边缘分布函数

字太多了,先敲到这。
在这里插入图片描述

在这里插入图片描述

二、离散型随机变量的边缘分布律

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

三、连续型随机变量的边缘分布

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

0 x 31 0x31 0x31 条件分布

一、离散型随机变量的条件分布

在这里插入图片描述

二、连续型随机变量的条件分布

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

0 x 34 0x34 0x34 相互独立的随机变量

一、随机变量的相互独立性

1. 定义

F ( x , y ) F(x,y) F(x,y) F x ( x ) , F y ( y ) F_x(x),F_y(y) Fx(x),Fy(y) 分别是二维随机变量 ( X , Y ) (X,Y) (X,Y) 的分布函数及边缘分布函数。若对于所有 x x x y y y P { X ≤ x , Y ≤ y } = P { X ≤ x } P { Y ≤ y } P\{X ≤x,Y≤y\}=P\{X≤x\}P\{Y ≤y\} P{Xx,Yy}=P{Xx}P{Yy} F ( x , y ) = F x ( x ) F y ( y ) F(x,y)=F_x(x)F_y(y) F(x,y)=Fx(x)Fy(y)则称随机变量 X X X Y Y Y是相互独立的。

2. 说明

在这里插入图片描述

在这里插入图片描述

二、二维随机变量的推广

1. 分布函数

n n n维随机变量 ( X 1 , X 2 , … , X n ) (X_1,X_2,…,X_n) (X1,X2,,Xn)的分布函数 F ( x 1 , x 2 , … , x n ) = P { X 1 ≤ x 1 , X 2 ≤ x 2 , , X n ≤ x n } F(x_1,x_2,…,x_n)=P\{X_1≤x_1,X_2 ≤x_2,,X_n ≤x_n\} F(x1,x2,,xn)=P{X1x1,X2x2,,Xnxn}其中 x 1 , x 2 , … , x n x_1,x_2,…,x_n x1,x2,,xn为任意实数。

2. 概率密度函数

在这里插入图片描述

3. 边缘分布函数

在这里插入图片描述

4. 边缘概率密度函数

在这里插入图片描述

5. 相互独立性

在这里插入图片描述

6. 重要结论

在这里插入图片描述

二维正态分布(X,Y),X和Y独立判定的充要条件?

ρ = 0 \LARGE{\rho = 0} ρ=0

0 x 35 0x35 0x35 两个随机变量函数的分布

一、离散型随机变量函数的分布

若二维离散型随机变量的联合分布律为 P { X = x i , Y = y i } = P i j , i , j = 1 , 2 , … , P\{X =x_i,Y=y_i\}=P_{ij}, i, j =1,2,…, P{X=xi,Y=yi}=Piji,j=1,2,,则随机变量函数 Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y)的分布律为 P { Z = z k } = P { g ( X , Y ) = z k } = ∑ z k = g ( x i , y j ) P i j ,   k = 1 , 2 … P\{Z=z_k \} =P\{g(X,Y)=z_k\}=\sum_{z_k=g(x_i,y_j)}Pij, \ k =1,2… P{Z=zk}=P{g(X,Y)=zk}=zk=g(xi,yj)Pij, k=1,2

二、连续型随机变量函数的分布

1. Z = X + Y Z=X+Y Z=X+Y的分布

在这里插入图片描述在这里插入图片描述

说明

一般, X , Y X,Y X,Y相互独立且 X ∼ N ( μ 1 , σ 1 2 ) , Y ∼ N ( μ 2 , σ 2 2 ) X\sim N(\mu_1,\sigma^2_1),Y\sim N(\mu_2,\sigma^2_2) XN(μ1,σ12),YN(μ2,σ22)。则 Z = X + Y Z=X+Y Z=X+Y仍然服从正态分布,且有 Z ∼ N ( μ 1 + μ 2 , σ 1 2 + σ 2 2 ) Z\sim N(\mu_1+\mu_2,\sigma^2_1+\sigma^2_2) ZN(μ1+μ2,σ12+σ22).

有限个相互独立的正态随机变量的线性组合仍然服从正态分布。

推广 :n个相互独立的T分布变量之和的情况.

X 1 , X 2 , … , X n X_1,X_2,…,X_n X1,X2,,Xn相互独立,且 X i X_i Xi,服从参数为 α i , β ( i = 1 , 2 , … , n ) \alpha_i,\beta(i =1,2,…,n) αi,β(i=1,2,,n) Γ \Gamma Γ分布,则 X 1 + X 2 , + … + X n X_1+X_2,+…+X_n X1+X2,++Xn服从参数为 ∑ i = 1 n α i , β \sum_{i=1}^{n}\alpha_i,\beta i=1nαi,β Γ \Gamma Γ分布。

2. Z = X Y Z=\frac{X}{Y} Z=YX的分布

在这里插入图片描述在这里插入图片描述在这里插入图片描述

3. M = m a x ( X , Y ) M=max(X,Y) M=max(X,Y) N = m i n ( X , Y ) N=min(X,Y) N=min(X,Y)的分布

在这里插入图片描述在这里插入图片描述

推广

在这里插入图片描述

4. Z = XY的分布

f X Y ( z ) = ∫ − ∞ ∞ 1 ∣ x ∣ f ( x , z x ) d x {f_{XY}(z)=\int _{-\infty } ^ \infty \frac{1}{|x|}f(x,\frac{z}{x})dx} fXY(z)=x1f(x,xz)dx

(4)计算以下三种常见分布随机变量函数的分布:

1) X ∼ B ( n , p ) , Y ∼ B ( m , p ) X\sim B(n,p),Y\sim B(m,p) XB(n,p)YB(m,p),且X与Y相互独立,则 X + Y ∼ B ( n + m , p ) X+Y \sim B(n+m,p) X+YB(n+m,p)
2) X ∼ P ( λ 1 ) , Y ∼ P ( λ 2 ) X\sim P(λ1),Y\sim P(λ2) XP(λ1)YP(λ2),且X与Y相互独立,则 X + Y ∼ P ( λ 1 + λ 2 ) X+Y \sim P(\lambda _1 +\lambda _2) X+YP(λ1+λ2)
3) X ∼ N ( μ 1 , σ 1 2 ) , Y ∼ N ( μ 2 , σ 2 2 ) X\sim N(\mu _1 ,\sigma_1 ^2),Y\sim N(\mu _2 ,\sigma_2 ^2) XN(μ1,σ12)YN(μ2,σ22),且X与Y相互独立,则 X + Y ∼ ( μ 1 + μ 2 + σ 1 2 σ 2 2 ) X+Y \sim (\mu _1 +\mu _2 + \sigma _1^2 \sigma_2^2) X+Y(μ1+μ2+σ12σ22)

已标记关键词 清除标记