Interpolation插值
对于缺失值的处理,比较常见的是数值分析中的插值和拟合这两种方法。插值指的是在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点;拟合则是找到一条“最优”的曲线,尽可能地贴近平面上一系列的点[1]。
设函数 y = f ( x ) y=f(x) y=f(x)在区间 [ a , b ] [a,b] [a,b]上有定义,且已知在点:
a ≤ x 0 < x 1 < ⋯ < x n ≤ b (1) a\le x_0<x_1<\cdots<x_n\le b\tag{1} a≤x0<x1<⋯<xn≤b(1)
上的值分别为: y 0 , y 1 , ⋯ , y n y_0,y_1,\cdots ,y_n y0,y1,⋯,yn,若存在一简单函数 P ( x ) P(x) P(x)使得:
P ( x i ) = y i , ( i = 0 , 1 , 2 , ⋯ , n ) , (2) P(x_i)=y_i,\quad (i=0,1,2,\cdots, n),\tag{2} P(xi)=yi,(i=0,1,2,⋯,n),(2)
则称 P ( x ) P(x) P(x)为 f ( x ) f(x) f(x)的插值函数,点 x 0 , x 1 , ⋯ , x n x_0,x_1,\cdots,x_n x0,x1,⋯,xn称为插值节点,包含插值节点的区间 [ a , b ] [a,b] [a,b]称为插值区间,求插值函数 P ( x ) P(x) P(x)的方法称为插值法[2]。
设有 n + 1 n+1 n+1个互不相同的节点 ( x i , y i ) , ( i = 0 , 1 , 2 , ⋯ , n ) (x_i,y_i),(i=0,1,2,\cdots,n) (xi,yi),(i=0,1,2,⋯,n),则存在唯一的多项式:
L n ( x ) = a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n , (3) L_n(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n,\tag{3} Ln(x)=a0+a1x+a2x2+⋯+anxn,(3)
使得 L n ( x j ) = y j , ( j = 0 , 1 , 2 , ⋯ , n ) L_n(x_j)=y_j,(j=0,1,2,\cdots,n) Ln(xj)=yj,(j=0,1,2,⋯,n)。只要 n + 1 n+1 n+1个节点互异,满足上述条件的多项式是唯一存在的,如果不限制多项式的次数,插值多项式并不唯一,下面证明上述结论[2]:
构造如下方程组:
{ a 0 + a 1 x 0 + a 2 x 0 2 + … + a n x 0 n = y 0 a 0 + a 1 x 1 + a 2 x 1 2 + … + a n x 1 n = y 1 ⋮ a 0 + a 1 x n + a 2 x n 2 + … + a n x n n = y n . (4) \left\{ \begin{array}{l} a_0 + a_1 x_0 + a_2 x_0^2 + \ldots + a_n x_0^n = y_0 \\ a_0 + a_1 x_1 + a_2 x_1^2 + \ldots + a_n x_1^n = y_1 \\ \vdots \\ a_0 + a_1 x_n + a_2 x_n^2 + \ldots + a_n x_n^n = y_n \end{array} \right..\tag{4} ⎩
⎨
⎧a0+a1x0+a2x02+…+anx0n=y0a0+a1x1+a2x12+…+anx1n=y1⋮a0+a1xn+a2xn2+…+anxnn=yn.(4)
令:
A = [ 1 x 0 ⋯ x 0 n 1 x 1 ⋯ x 1 n ⋮ ⋮ ⋱ ⋮ 1 x n ⋯ x n n ] , X = [ a 0 a 1 ⋮ a n ] , Y = [ y 0 y 1 ⋮ y n ] . \boldsymbol{A} = \begin{bmatrix} 1 & x_0 & \cdots & x_0^n \\ 1 & x_1 & \cdots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \cdots & x_n^n \end{bmatrix}, \quad \boldsymbol{X} = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix},\quad \boldsymbol{Y} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}. A=
11⋮1x0x1⋮xn⋯⋯⋱⋯x0nx1n⋮xnn
,X=
a0a1⋮an
,Y=
y0y1⋮yn
.
对于方程组组 A X = Y \boldsymbol {A}\boldsymbol {X}=\boldsymbol{Y} AX=Y,由于矩阵 A \boldsymbol{A} A是Vandermonde范德蒙矩阵,故其行列式[3]:
∣ A ∣ = ∏ i = 1 n ∏ j = 0 i − 1 ( x i − x j ) ≠ 0. (5) |\boldsymbol{A}|=\prod_{i=1}^{n}\prod_{j=0}^{i-1}(x_i-x_j)\neq0.\tag{5} ∣A∣=i=1∏<

最低0.47元/天 解锁文章
3389

被折叠的 条评论
为什么被折叠?



