题目分析:
这个题初看之时觉得要用动态规划,而且解起来比较复杂。参考了李二娃的博客发现解法一场简单精妙,参考博客。使用两个指针表示curr和last当前可跳跃范围和已走范围,在一次循环中每次更新curr的值为curr = max(curr, i + nums[i]),i是所在点num[i]是可跳跃到哪。当i超过了last就更新last=curr与res += 1,res是步数,见详下面代码:
注: 我说的不够清晰,如有不解请看参考博客。
测试代码:
class Solution:
def jump(self, nums):
#两个指针表示curr和last当前可跳跃范围和已走范围,res是步数
curr, last, res, length = 0, 0, 0, len(nums)
for i in range(length):
#i超过了last就更新`last=curr`与`res += 1`
if i > last:
last = curr
res += 1
#当前覆盖范围达到了最后,说明后面已经不需要再更新步数了
if curr >= length - 1: break
#每次更新curr的值为`curr = max(curr, i + nums[i])`,i是所在点num[i]是可跳跃到哪
curr = max(curr, i + nums[i])
return res
print(Solution().jump([2,3,1,1,4])) #提交时请删除该行
跳跃范围问题的简单精妙解法

博客围绕一个初看需用动态规划且较复杂的题目展开。参考李二娃博客后,发现有简单精妙的解法。使用两个指针curr和last分别表示当前可跳跃范围和已走范围,在一次循环中更新curr值,当i超过last时更新相关值,res为步数。
2197

被折叠的 条评论
为什么被折叠?



