# 复变函数可视化傅里叶展开复反演

\begin{aligned} f(z)& = \frac{1}{1-z}\\ &=1+z+z^2+z^3+...\\ &=1 + re^{\theta} + r^{2}e^{2\theta}+ r^{3}e^{3\theta}+... \end{aligned}

$f(z) = \frac{1}{z}\\$

一个过原点的直线经过复反演之后还是一条直线



$\int_{ z_{0} }^{ z_{1} }f(z)dz\\ =\sum f(\Delta z) \Delta z$

\begin{aligned} f(z) &= \frac{1}{z} \\f(a+bi) &= \frac{1}{a+bi} \\ \\&= \frac{a-bi}{a^2+b^2} \end{aligned}

1个例子

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

class shape:
x = []
y = []
def __init__(self, x, y):
self.x = x.copy()
self.y = y.copy()

def draw(shapetemp):
plt.plot(shapetemp.x,shapetemp.y)

def fanyan(shape1):
temp = []
for x,y in zip(shape1.x,shape1.y):
temp.append( (x/(x*x+y*y),-y/(x*x+y*y)) )
#         print((x/(x*x+y*y),-y/(x*x+y*y)) )
return shape(list(list(zip(*temp))[0]),list(list(zip(*temp))[1]))

x = np.arange(-10,10,0.001)
y = x+ 0.1
y1 = -x+ 0.1
shape1 = shape(x,y)
shape1 = shape(x,y1)

draw(shape1)
draw(shape2)
sf1 = fanyan(shape1)
sf2 = fanyan(shape2)
draw(sf1)
draw(sf2)
plt.grid()
plt.axis('equal')
plt.show()