[BZOJ]1014 火星人prefix(JSOI2008)

  一边听省队dalao讲课一边做题真TM刺激。

  BZOJ的discuss简直就是题面plus、大样例、SuperHINT、dalao题解的结合体。

 

Description

  火星人最近研究了一种操作:求一个字串两个后缀的公共前缀。比方说,有这样一个字符串:madamimadam,我们将这个字符串的各个字符予以标号:序号: 1 2 3 4 5 6 7 8 9 10 11 字符 m a d a m i m a d a m 现在,火星人定义了一个函数LCQ(x, y),表示:该字符串中第x个字符开始的字串,与该字符串中第y个字符开始的字串,两个字串的公共前缀的长度。比方说,LCQ(1, 7) = 5, LCQ(2, 10) = 1, LCQ(4, 7) = 0 在研究LCQ函数的过程中,火星人发现了这样的一个关联:如果把该字符串的所有后缀排好序,就可以很快地求出LCQ函数的值;同样,如果求出了LCQ函数的值,也可以很快地将该字符串的后缀排好序。 尽管火星人聪明地找到了求取LCQ函数的快速算法,但不甘心认输的地球人又给火星人出了个难题:在求取LCQ函数的同时,还可以改变字符串本身。具体地说,可以更改字符串中某一个字符的值,也可以在字符串中的某一个位置插入一个字符。地球人想考验一下,在如此复杂的问题中,火星人是否还能够做到很快地求取LCQ函数的值。

Input

  第一行给出初始的字符串。第二行是一个非负整数M,表示操作的个数。接下来的M行,每行描述一个操作。操作有3种,如下所示:
  1、询问。语法:Qxy,x,y均为正整数。功能:计算LCQ(x,y)限制:1<=x,y<=当前字符串长度。
  2、修改。语法:Rxd,x是正整数,d是字符。功能:将字符串中第x个数修改为字符d。限制:x不超过当前字符串长度。
  3、插入:语法:Ixd,x是非负整数,d是字符。功能:在字符串第x个字符之后插入字符d,如果x=0,则在字符串开头插入。限制:x不超过当前字符串长度。

Output

  对于输入文件中每一个询问操作,你都应该输出对应的答案。一个答案一行。

Sample Input

  madamimadam
  7
  Q 1 7
  Q 4 8
  Q 10 11
  R 3 a
  Q 1 7
  I 10 a
  Q 2 11

Sample Output

  5
  1
  0
  2
  1

HINT

  1、所有字符串自始至终都只有小写字母构成。
  2、M<=150,000。
  3、字符串长度L自始至终都满足L<=100,000。
  4、询问操作的个数不超过10,000个。
  对于第1,2个数据,字符串长度自始至终都不超过1,000。
  对于第3,4,5个数据,没有插入操作。

 

Solution

  对于这道题,按照惯性思维我们首先应该想到的是后缀数组吧,毕竟题目描述中都直接点明了LCP。

  可定睛一看,动态修改?还要支持插入??显然后缀数组是不现实的。

  果然出题人在题面里写了啥算法我们就不能写啥。

  我们从插入操作入手,很快我们想到了平衡树;

  我们从子串判断是否相等入手,很快我们想到了字符串hash。(脑洞来源Noi2016D1T1)

  然后这道题就做完了。

  我们用平衡树维护子串的hash值,询问时二分答案,每次判断两个子串的hash值是否相等就行了。

  注意hash可以用自然溢出,小C写了个合并log的hash,又开了long long,跑得奇慢无比。(有更好的hash方法就不要学小C了)

  (小C的)总时间复杂度。(Q为询问次数,M为修改次数)

 

  (2017/11/27 update)

  小C把合并的部分优化了一下,将幂次预处理,去掉了合并的log,下方显示的是优化后的代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#define l(a) son[a][0]
#define r(a) son[a][1]
#define rt (l(rtfa))
#define rtfa (MN-1)
#define MN 100005
#define ll long long
using namespace std;
int siz[MN],son[MN][2],cr[MN],fa[MN];
char c[MN];
int din,n,m;
ll hs[MN],mi[MN];

inline int read()
{
    int n=0,f=1; char c=getchar();
    while (c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
    while (c>='0' && c<='9') {n=n*10+c-'0'; c=getchar();}
    return n*f;
}

inline void update(int x)
{
    siz[x]=siz[l(x)]+siz[r(x)]+1;
    hs[x]=(hs[l(x)]*101+cr[x])*mi[siz[r(x)]]+hs[r(x)];
}

void rotate(int x)
{
    register int y,z,l,r;
    y=fa[x]; z=fa[y]; l=r(y)==x; r=l^1;
    fa[y]=x; fa[x]=z; fa[son[x][r]]=y;
    son[z][r(z)==y]=x; son[y][l]=son[x][r]; son[x][r]=y;
    update(y);
}
void splay(int x,int rf)
{
    register int y,z;
    for (;fa[x]!=rf;rotate(x))
        if (fa[y=fa[x]]!=rf) z=fa[y],rotate(r(z)==y^r(y)==x?x:y);
    update(x);
}

void getins(int &x,int fat,int y,char z)
{
    if (!x) {x=++din; cr[x]=z; fa[x]=fat; splay(x,rtfa); return;}
    if (y>=siz[l(x)]+1) getins(r(x),x,y-siz[l(x)]-1,z);
    else getins(l(x),x,y,z);
}
void getsiz(int x,int y,int rtf)
{
    if (y==siz[l(x)]+1) {splay(x,rtf); return;}
    else if (y>siz[l(x)]+1) getsiz(r(x),y-siz[l(x)]-1,rtf);
    else getsiz(l(x),y,rtf);
}
void getitv(int L,int R) {R+=2; getsiz(rt,L,rtfa); getsiz(rt,R,rt);}

void build(int &x,int fat,int L,int R)
{
    if (L>R) return;
    int mid=L+R>>1;
    x=++din; cr[x]=c[mid]; fa[x]=fat;
    build(l(x),x,L,mid-1); build(r(x),x,mid+1,R);
    update(x);
}

int main()
{
    char g[2],z[2];
    register int i,x,y,L,R;
    register ll lx,ly;
    scanf("%s",c+1);
    n=strlen(c+1); m=read();
    for (mi[0]=1,i=1;i<MN;++i) mi[i]=mi[i-1]*101;
    c[0]=c[n+1]=0;
    build(rt,rtfa,0,n+1);
    while (m--)
    {
        scanf("%s",g);
        if (g[0]=='Q')
        {
            x=read(); y=read();
            if (x>y) swap(x,y);
            for (L=0,R=n-y+1;L<R;)
            {
                int mid=L+R+1>>1;
                getitv(x,x+mid-1); lx=hs[l(r(rt))];    
                getitv(y,y+mid-1); ly=hs[l(r(rt))];                    
                if (lx==ly) L=mid; else R=mid-1;
            }
            printf("%d\n",L);
        }
        else if (g[0]=='R')
        {
            x=read(); scanf("%s",z); getsiz(rt,x+1,rtfa);
            cr[rt]=z[0]; update(rt);
        }
        else if (g[0]=='I') {x=read(); ++n; scanf("%s",z); getins(rt,rtfa,x+1,z[0]);}
    }
}

 

Last Word

  小C开始做这道题时,思路已经被出题人带跑了。

  然后就脑补了一些骚东西,后缀数组,后缀平衡树,后缀自动机……未果。

  无聊点开discuss,一眼看到标题“xxx自然溢出xxx”,瞬间觉得自己是个智障,回头就把这题切了。

转载于:https://www.cnblogs.com/ACMLCZH/p/7134364.html

### 回答1: bzoj[1597][usaco2008 mar]土地购买 斜率优化 这道题是一道经典的斜率优化题目,需要用到单调队列的思想。 首先,我们可以将题目中的式子进行变形,得到: f[i] = f[j] + (sum[i] - sum[j] - m) ^ 2 + k 其中,sum[i] 表示前缀和,m 和 k 都是常数。 我们可以将式子中的 sum[i] 和 k 看作常数,那么我们需要优化的就是 (sum[i] - sum[j] - m) ^ 2 这一项。 我们可以将其展开,得到: (sum[i] - sum[j] - m) ^ 2 = sum[i] ^ 2 - 2 * sum[i] * (sum[j] + m) + (sum[j] + m) ^ 2 我们可以将其看作一个二次函数,其中 a = 1,b = -2 * (sum[j] + m),c = (sum[j] + m) ^ 2。 我们可以发现,当 j < k 时,如果 f[j] + a * sum[j] + b * sum[j] <= f[k] + a * sum[k] + b * sum[k],那么 j 就不可能是最优决策点,因为 k 比 j 更优。 因此,我们可以用单调队列来维护决策点。具体来说,我们可以维护一个单调递增的队列 q,其中 q[i] 表示第 i 个决策点的下标。每次加入一个新的决策点 i 时,我们可以将队列尾部的决策点 j 弹出,直到队列为空或者 f[j] + a * sum[j] + b * sum[j] <= f[i] + a * sum[i] + b * sum[i]。然后,我们将 i 加入队列尾部。 最后,队列头部的决策点就是最优决策点。我们可以用类似于双指针的方法来维护队列头部的决策点是否在当前区间内,如果不在,就弹出队列头部。 时间复杂度为 O(n)。 ### 回答2: 这道题目属于斜率优化的经典题目,难度较高,需要掌握一定的数学知识。 首先,我们可以将题目中的“最大利润”转化为“最小成本”,这样问题就变成了找到一个方案,使得购买土地的成本最小。 接着,我们考虑如何用斜率优化来解决这个问题。我们可以定义一个函数f(i),表示前i块土地的最小成本。 显然,f(1)=0,因为不需要购买任何土地。 对于f(i),它可以由f(j)+b(i)×a(j+1)得到,其中j<i,a(j+1)表示第j+1块土地的面积,b(i)表示第i块土地的价格。这个式子的含义是,我们现在要购买第i块土地,那么前面的土地(即前j块)就都要买,所以f(j)表示前j块土地的最小成本,b(i)×a(j+1)表示购买第i块土地的成本。 那么,我们可以得到递推公式: f(i)=min{f(j)+b(i)×a(j+1)},其中j<i。 这个公式看起来很简单,但是要注意的是,当b(i)×a(j+1)的斜率相同时,我们需要取其中面积较小的土地,因为它的价格更低。因此,我们需要对斜率进行排序,并在递推中用单调队列维护斜率相等的情况下面积最小的土地。 最终,f(n)就是题目所求的最小成本。 总之,这道题目需要深入理解斜率优化算法的原理和实现方式,并且需要注意细节处理,如果能够顺利地解决这个问题,那么对于斜率优化算法的掌握程度就有了很大的提升。 ### 回答3: 土地购买问题可以采用斜率优化算法来解决。这个问题可以转化为一个单调队列的问题。 首先,我们需要对土地价格按照边长从小到大排序。然后,对于每块土地,我们需要求出它的贡献。设 $f_i$ 表示前 $i$ 块土地连续的最小代价。 设当前处理到第 $i$ 块土地,已经求出了前 $j$ 块土地的最小代价 $f_j$。那么我们可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 式子中,$S_i$ 表示前 $i$ 块土地的边长和,$P$ 表示额外购买土地的代价。首先,不考虑额外购买土地,我们可以使用动态规划来求出 $f_i$。但是,考虑到额外购买土地的代价 $P$ 是一个固定值,我们可以考虑将它与某一块土地的代价合并起来,这样就可以使用斜率优化技术来优化动态规划算法。 我们定义一个决策点 $j$,表示我们当前要处理第 $i$ 块土地时,已经处理过 $j$ 块土地,并将第 $j+1$ 块土地到第 $i$ 块土地购买,所需的最小代价。我们假设 $S_i>S_j$,则可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 将它整理成斜率截距式可以得到: $$ y=kx+b $$ 其中 $k=(S_j)^2-2S_iS_j$,$b=f_j+(S_i)^2+P-S_j^2$,$x=S_j$,$y=f_j+(S_j-S_i)^2-S_j^2$。我们发现 $k$ 是一个单调递减的函数,因此我们可以使用一个单调队列来维护所有可能成为决策点的点。对于每个点,我们计算函数 $y$ 的值并将它们加入队列,然后取队头元素的值作为 $f_i$。 综上所述,我们可以使用斜率优化技术来解决土地购买问题,时间复杂度为 $O(n)$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值