排序:
默认
按更新时间
按访问量

java和javac中涉及的path们

在cmd中进行java编译和运行时,有几个path比较容易混淆,这里做下粗略说明 1、java   -cp    即为-classpath    eg.   java -cp C:\workspace  HelloWorld        运行该路径下的HelloWorld的可执行文件 2、j...

2018-10-10 21:36:03

阅读数:7

评论数:0

Java的三大平台

根据应用领域的不同,区分为三大平台:Java SE 、Java EE 、Java ME; 1、Java SE Java SE 可以分为四个部分:JVM虚拟机、JRE运行环境、JDK开发工具包、Java语言; 2、Java EE Java EE 以Java SE为基础,定义了一系列的服务、A...

2018-10-07 22:42:38

阅读数:44

评论数:0

区分Java的JVM/JRE/JDK

1、JVM Java Virtual Machine 即Java虚拟机,可以让Java跨平台,如Windows、Linux等操作系统; Java的原始码扩展名为.java,经过编译后为扩展名为.class的位码,JVM将位码翻译为相依于平台的机器码,从而实现“编译一次,到处执行”的跨平台目的;...

2018-10-07 22:20:18

阅读数:9

评论数:0

树回归

一、树回归 优点:可以对复杂和非线性的数据建模 缺点:结果不易理解 适用数据类型:数值型和标称型数据 二、概念 1、CART分类回归树(Classification And Regression Trees) 既可以用于分类,也可以用于回归 2、树构建算法比较: ...

2017-12-07 12:16:12

阅读数:68

评论数:0

线性回归

一、线性回归: 优点:结果易于理解,计算不复杂 缺点:对非线性的数据拟合不好 使用数据类型:数值型和标称型数据 二、标准线性回归: 已有一些对应的数据x和y,求出回归方程 回归系数w^=(XTX)-1XTy 平方误差∑(yi-xiTw)2 比...

2017-12-07 12:12:02

阅读数:80

评论数:0

利用AdaBoost元算法提高分类性能

一、 优点:泛化错误率降低,易编码,可以应用在大部分分类器上,无参数调整 缺点:对离群点敏感 使用数据类型:数值型和标称型数据 二、 1、元算法:对其他算法进行组合 不同算法集成、同一算法在不同设置下的集成、数据集不同部分分配给不同分类器之后的集成 2、算法比较: bagging(自举汇聚法...

2017-12-07 12:04:38

阅读数:95

评论数:0

logistic regression 逻辑回归

逻辑回归 一、优缺点及适用数据类型 优点:计算代价不高,易于理解和实现 缺点:容易欠拟合,分类精度可能不够 适用数据类型:数值型和标称型数据 二、基本算法    1.Logistic回归目的是寻找一个非线性函数Sigmoid的最佳拟合参数 2.用Sigmoid函数作为...

2017-11-26 13:18:51

阅读数:57

评论数:0

决策树算法简介

决策树(decision tree) 一、背景知识 符号xi的信息量: L(xi) = - log2p(xi) 熵: H = - ∑p(xi)log2p(xi) 信息增益: 特征A对训练数据集D的信息增益g(D,A) = H(D) - H(D|A) 其中,定义集合D的经...

2017-11-26 12:53:42

阅读数:72

评论数:0

kNN(K-Nearest Neighbor)算法简介

kNN(K-Nearest Neighbor)算法——监督学习中的一种常见分类算法 一、kNN(K-Nearest Neighbor)算法优缺点及适用数据范围     优点:精度高、对异常值不敏感、无数据输入假定     缺点:计算复杂度高、空间复杂度高     适用数据范围:...

2017-11-20 13:50:28

阅读数:116

评论数:0

机器学习简介

一、什么是机器学习? 是一门研究计算机模拟人类学习行为的学科 不需要外部的明显指示,计算机自己通过数据进行建模和学习来进行建模和预测 简单的说,就是利用计算机把无序的数据转换为有用的信息的一门学科 二、什么是深度学习? 是基于机器学习延伸出来的一个新的领域 以人的大脑结...

2017-11-19 09:36:10

阅读数:69

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭