Lawe
码龄8年
关注
提问 私信
  • 博客:160,514
    160,514
    总访问量
  • 63
    原创
  • 1,697,787
    排名
  • 48
    粉丝
  • 0
    铁粉

个人简介:有问题可以直接评论,欢迎指正

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:海南省
  • 加入CSDN时间: 2016-07-31
博客简介:

Lawe的博客

博客描述:
以傲慢的姿态去藐视一切该死的借口~
查看详细资料
个人成就
  • 获得34次点赞
  • 内容获得35次评论
  • 获得161次收藏
创作历程
  • 3篇
    2018年
  • 45篇
    2017年
  • 17篇
    2016年
成就勋章
TA的专栏
  • 论文笔记
    9篇
  • Python学习
    5篇
  • Text Mining
    1篇
  • leetcode题目
    9篇
  • C++学习笔记
    11篇
  • PRML读书笔记
    2篇
  • Deep Learning
    5篇
  • Machine Learning
    8篇
  • Question Answering
    5篇
  • Natural Language Processing
    7篇
  • 其他
    7篇
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【C++学习笔记】函数匹配和函数指针

一、函数匹配   在大多数情况下,比较容易确定某次调用应选用哪个重载函数,然而当几个重载函数的形参数量相等以及某些形参的类型可以由其他类型转换得到时,这个相对就不那么容易。1.1 实参类型转换   确定最佳匹配,编译器将实参类型到形参类型的转换分成以下几个等级:   1.精确匹配,包括:    ①实参类型和形参类型相同;    ②实参从数组或函数类型转换成对应的指针类型;    ...
原创
发布博客 2018.02.20 ·
490 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【C++学习笔记】特殊用途语言特性

一、默认实参   如果在多次调用函数时,其形参都被赋予同一值,可以把反复出现的值成为函数的默认实参(default argument),需要注意的是,在形参列表中,一旦某个形参被赋予默认值,那么后面多有的形参都必须有默认值。   如果使用默认实参,只需在调用函数时省略实参就可以,函数调用时实参按其位置解析,默认实参负责填补函数调用缺少的尾部实参。1.1 默认实参声明   函数的声明一般...
原创
发布博客 2018.01.15 ·
416 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【C++学习笔记】函数返回和函数重载

一、返回类型和return语句   return语句终止当前执行的函数并将控制权返回到调用该函数的地方,return语句有两种形式:return;return expression;1.1 无返回值函数   没有返回值的return语句只能用在返回类型是void的函数中,按时返回void的函数不要求非得有return语句,因为这种函数最后一句会隐式地执行return。void函
原创
发布博客 2018.01.08 ·
883 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【C++学习笔记】函数基础和参数传递

一个函数(function)定义包括:返回类型、函数名字、0或若干个形参组成的列表以及函数体。实参是形参的初始值,并且实参的类型必须与对应的形参类型匹配,函数的形参列表可以为空,但是不能省略,一般是书写一个空的形参列表,也可以使用关键字void表示函数没有形参。
原创
发布博客 2017.12.29 ·
502 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【论文笔记】Adversarial Multi-task Learning for Text Classification

该文章发于ACL 2017,针对于已有的大多数神经网络多任务学习模型进行文本分类,存在的共享特征(shared features)可能再次包含特定任务特征(task-specific features)或者含有来自其他任务带来的噪声问题,作者提出了一个对抗多任务学习模型,缓解了共享特征空间和特定任务特征空间相互干扰的问题,作者在16个任务上进行实验证明其模型的有效性。
原创
发布博客 2017.12.19 ·
5011 阅读 ·
3 点赞 ·
3 评论 ·
8 收藏

【C++学习笔记】类型转换和跳转语句

在C++语言中,如果两种类型由关联,那么当程序需要其中一种类型的运算对象时,可以用另一种类型的对象或值来替代,即如果如果两种类型可以相互转换(conversion),那么它们就是关联的。
原创
发布博客 2017.12.17 ·
604 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【其他】Tensorflow分布式使用简介

深度学习由于存在计算量大,并且需要大量的数据来训练的问题,因而需要采用一些并行机制来加快训练速度,目前常用的并行方法主要有数据并行(data parallel)和模型并行(model parallel)两种。下面主要介绍tensorflow框架采用的数据并行方法 。
原创
发布博客 2017.12.04 ·
2533 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

【C++学习笔记】迭代器和数组

在string对象或vector对象中我们可以使用下标运算符来访问其中的字符,除此外,还有一种更通用的机制也可以实现这样的目的,即迭代器(iterator)。
原创
发布博客 2017.12.02 ·
6518 阅读 ·
6 点赞 ·
0 评论 ·
16 收藏

【C++学习笔记】标准库类型vector

标准库类型vector表示对象的集合,其中多有对象的类型都相同,集合中的每个对象都有一个与之对象的索引用来访问对象,需要注意的是引用不是对象,所以不存在包含引用的vector,因其用来容纳着其他对象,所以也被称为容器(container)。
原创
发布博客 2017.12.01 ·
405 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【C++学习笔记】标准库类型string

标准库类型string表示可变长的字符序列,使用string类型必须先包含string头文件,string定义在命名空间std。一个类可以定义很多种初始化对象的方式,它们之间都有一定的区别,比如初始值的数量不同,或初始值的类型不同。
原创
发布博客 2017.11.24 ·
492 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【Machine Learning】模型融合之Stacking

Stacking(stacked generalization)是在大数据竞赛中不可缺少的武器,其指训练一个用于组合(combine)其他多个不同模型的模型,具体是说首先我们使用不同的算法或者其他方法能够训练出多个不同的模型,然后将这些模型的输出作为新的数据集,即将这些训练的模型的输出再作为为输入训练一个模型,最后得到一个最终的输出,下图为Stacking的大致流程图
原创
发布博客 2017.11.19 ·
6377 阅读 ·
1 点赞 ·
1 评论 ·
15 收藏

【C++学习笔记】处理类型和自定义数据结构

类型别名(type alias)是一个名字,它是某种类型的同义词,使用类型别名可让类型名字变得简单明了、易于理解和使用,以及清楚地知道使用该类型的目的,有两种方法定义类型别名,分别是:
原创
发布博客 2017.11.17 ·
770 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【C++学习笔记】复合类型和const限定符

复合类型(compound type)是指基于其他类型定义的类型。本次主要介绍引用和指针两种。引用(reference)为对象起了另外一个名字,引用类型引用(refers to)另外一种类型。通过将声明写成&d的形式定义引用类型,其中d是声明的变量名。
原创
发布博客 2017.11.15 ·
334 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【C++学习笔记】基本内置类型和变量

C++中的基本内置类型和变量的基本介绍。算术类型分为:整型(integral type,包括字符和布尔类型在内)和浮点型。除去布尔型和扩展的字符型外,其他整型可以划分为带符号的(signed)和无符号的(unsigned)两种。带符号类型可以表示正数、负数或0,而无符号类型则仅能表示大于等于0的值。
原创
发布博客 2017.11.13 ·
648 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【Natural Language Processing】语言模型训练工具Srilm的安装及使用简介

实习做了一段时间的语言模型,使用到了Srilm这个工具,简单做一下记录,这个是一个统计和分析语言模型的工具,据说年龄很大了,总之它可以很方便的统计语料的n-gram,以及构建基于n-gram的语言模型。
原创
发布博客 2017.11.11 ·
1998 阅读 ·
0 点赞 ·
0 评论 ·
9 收藏

【论文笔记】An End-to-End Model for QA over KBs with Cross-Attention Combining Global Knowledge

该文章发于ACL 2017,在Knowledge base-based question answering (KB-QA)上,作者针对于前人工作中存在没有充分考虑候选答案的相关信息来训练question representation的问题,提出了一个使用Cross-Attention机制的神经网络模型来针对于候选答案的不同方面信息来训练模型;并且训练知识库的全局信息学习,在一定程度
原创
发布博客 2017.11.09 ·
3741 阅读 ·
1 点赞 ·
7 评论 ·
4 收藏

【论文笔记】Question Answering over Freebase with Multi-Column Convolutional Neural Networks

该文章发于ACL 2015,作者提出了一个基于Freebase,使用multi-column convolutional neural networks(MCCNNs)的自动问答模型,分别从答案路径, 答案背景信息, 以及答案类型 来理解问题,并学习它们的分布式表示(distributed representations),在不使用任何手动特征及词表等条件下,取得了很好地效果。
原创
发布博客 2017.11.04 ·
3054 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

【论文笔记】Question Answering with Subgraph Embeddings

该文章发于EMNLP 2014,作者提出了一个基于Freebase,根据问题中的主题词在知识库中确定候选答案,构建出一个模型来学习问题和候选答案的representation,然后通过这些representation来计算问题和候选答案的相关度来选出正确答案,在不适用词表、规则、句法和依存树解析等条件下,超越了当时最好的结果。
原创
发布博客 2017.11.01 ·
2616 阅读 ·
1 点赞 ·
2 评论 ·
6 收藏

【论文笔记】Information Extraction over Structured Data: Question Answering with Freebase

该文章发于ACL 2014,作者提出了一个基于Freebase knowledge base,结合web-scale语料,通过信息抽取的方法进行KBQA,并在当时取得了比前人方法都要好的效果。
原创
发布博客 2017.10.31 ·
2773 阅读 ·
1 点赞 ·
1 评论 ·
6 收藏

【论文笔记】Semantic Parsing on Freebase from Question-Answer Pairs

该文章发于EMNLP 2013,作者提出训练一个语义解析器(semantic parser),基于该语义解析器进行KBQA(knowledge base question answering),具体步骤是语义解析器把输入问题解析为logical forms,再基于这种结构化的表达从知识库(knowledge base)中寻找答案。
原创
发布博客 2017.10.29 ·
3502 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏
加载更多