0-1背包问题
有一组物品,其重量分别是:w1,w2,…wn,其价值分别是v1,v2,…,vn,现在有一个背包,其容量是C,
问怎么把物品装入背包,能够使背包的价值最大化?
所以说,0-1背包问题就是要么装入物品,要么不装入物品,不存在装入物品的一部分。
最后装入背包的那些物品不就是原始物品的一个子集吗!!!
我们可以用子集树解决!!!
我们用物品的重量来代表物品
int w[] = { 12,5,8,9,6 };//物品的重量
int v[] = { 9,2,4,7,8 };//物品的价值
const int length = sizeof(w) / sizeof(w[0]);//物品的个数
vector<int> x;//存储已经选择的物品
vector<int> bestx;//记录最优选择的物品
int c = 20;//背包的容量
int cw = 0;//已选择物品的重量
int cv = 0;//已选择物品的价值
int bestv = 0;//记录装入背包的物品的最大价值
int r = 0;//记录未处理的物品的总价值
void func(int i)
{
if (i == length)
{
if (bestv < cv)//如果题目是最优价值有很多情况,就判断==
{
bestv = cv;
bestx = x;
}
}
else
{
r -= v[i];//扣除处理过的物品的价值
if (cw + w[i] <= c)//剪枝,已选择物品的重量 + 即将选择的第i号物品的重量
{
cw += w[i];
cv += v[i];
x.push_back(w[i]);//装的是物品的重量,代表物品
func(i + 1);
cw -= w[i];
cv -= v[i];
x.pop_back();//回溯上去
}
//剪枝,bestv cv + [i+1,i+2.....n]总价值 > bestv
//当前选择的物品的价值+剩余可选物品的价值的和>当前的最大价值
if (cv + r > bestv)
{
func(i + 1);
}
r += v[i];//回溯到父节点
}
}
int main()
{
for (int val : v)
{
r += val;
}
func(0);
for (int w : bestx)
{
cout << w << " ";
}
cout << endl;
cout << "bestv:" << bestv << endl;
return 0;
}

这篇博客探讨了如何运用动态规划解决经典的0-1背包问题,以实现背包价值的最大化。通过实例展示了如何定义状态、设置递归函数,并进行剪枝操作,以优化搜索过程。最终代码实现了一个完整的0-1背包问题解决方案。

被折叠的 条评论
为什么被折叠?



