415-回溯算法解决0-1背包问题

这篇博客探讨了如何运用动态规划解决经典的0-1背包问题,以实现背包价值的最大化。通过实例展示了如何定义状态、设置递归函数,并进行剪枝操作,以优化搜索过程。最终代码实现了一个完整的0-1背包问题解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0-1背包问题

有一组物品,其重量分别是:w1,w2,…wn,其价值分别是v1,v2,…,vn,现在有一个背包,其容量是C,
问怎么把物品装入背包,能够使背包的价值最大化?

所以说,0-1背包问题就是要么装入物品,要么不装入物品,不存在装入物品的一部分。

最后装入背包的那些物品不就是原始物品的一个子集吗!!!
我们可以用子集树解决!!!

我们用物品的重量来代表物品

int w[] = { 12,5,8,9,6 };//物品的重量
int v[] = { 9,2,4,7,8 };//物品的价值
const int length = sizeof(w) / sizeof(w[0]);//物品的个数
vector<int> x;//存储已经选择的物品
vector<int> bestx;//记录最优选择的物品
int c = 20;//背包的容量
int cw = 0;//已选择物品的重量
int cv = 0;//已选择物品的价值
int bestv = 0;//记录装入背包的物品的最大价值
int r = 0;//记录未处理的物品的总价值

void func(int i)
{
	if (i == length)
	{
		if (bestv < cv)//如果题目是最优价值有很多情况,就判断==
		{
			bestv = cv;
			bestx = x;
		}
	}
	else
	{
		r -= v[i];//扣除处理过的物品的价值
		if (cw + w[i] <= c)//剪枝,已选择物品的重量 + 即将选择的第i号物品的重量
		{
			cw += w[i];
			cv += v[i];
			x.push_back(w[i]);//装的是物品的重量,代表物品
			func(i + 1);
			cw -= w[i];
			cv -= v[i];
			x.pop_back();//回溯上去
		}

		//剪枝,bestv   cv + [i+1,i+2.....n]总价值 > bestv
		//当前选择的物品的价值+剩余可选物品的价值的和>当前的最大价值
		if (cv + r > bestv)
		{
			func(i + 1);
		}
		r += v[i];//回溯到父节点
	}
}
int main()
{
	for (int val : v)
	{
		r += val;
	}
	func(0);
	for (int w : bestx)
	{
		cout << w << " ";
	}
	cout << endl;
	cout << "bestv:" << bestv << endl;
	return 0;
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林林林ZEYU

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值