416-回溯算法-排列树

本文详细解析了排列树的理论,包括原始序列全排列的多种可能性,通过枚举法逐个元素交换位置,构建了解空间树结构。算法实现部分展示了如何用递归生成排列,并计算n个元素的排列总数。重点在于理解排列树的时间复杂度和代码实例。
摘要由CSDN通过智能技术生成

解空间-排列树的理论

原始序列的全排列。不同的排列方式。
比如说1234有很多排列方式,所有的排列方式中,可能只有其中几种排列方式才满足题目的要求。

举个例子:
我们现在想获取1,2,3,4的全排列
枚举法
就是每个元素在各个位置上都出现1遍!
在这里插入图片描述
我们现在处理的是第一个位置上的元素,我们拿第一个位置上的元素和每个位置上的元素交换一下,如下图。
在这里插入图片描述
也可以这么说:我们先处理第1个位置的元素,我拿第一个位置的元素和每个位置的元素交换一下,这样就可以把每一个元素都在我第一个位置都出现1遍!
首先,我们从第1个位置开始。
第一个位置可以放1,剩下的就是2, 3,4
第一个位置还可以放2,剩下的就是1, 3,4
第一个位置还可以放3,剩下的就是2, 1,4
第一个位置还可以放4,剩下的就是2, 3,1

在这里插入图片描述
我们看根节点的左边第一个孩子的处理
现在相当于把第1个位置(元素1)处理完了。然后接下来看第2个位置。
然后在1的位置基础上。拿2和2交换。拿2和3交换。拿2和4交换。

在这里插入图片描述
以此类推下去。 我们看根节点的左边第二个孩子的处理。
相当于是第一个位置是确定了,即元素2确定了,我们拿第二个位置的元素1和后面两个元素依次交换位置。
在这里插入图片描述
我们在最左的一个节点上,已经解决了前2位的交换。现在前2个固定下来,然后处理3,4位。3和3交换。3和4交换。然后处理第4个位置,4和4交换。
在这里插入图片描述
现在最下面这层是前3个元素都固定好了。剩下最后1个元素。就自己和自己交换了。
在这里插入图片描述
一个叶子节点代表根节点的其中一个孩子(原序列的一种排列方式)的所有排列的可能。

所有叶子节点的总和就是原序列的全部排列方式。
这样,逻辑上构建出来的解空间树就是排列树了。

原始序列的元素个数是n个的话,有n!个叶子节点。
在这里插入图片描述
从上到下,依次少1叉!直到叶子节点是1叉。
排列树的时间复杂度:O(n!)

解空间-排列树的代码实现

我们考虑问题是考虑一层的,考虑的是水平的,递归负责的是垂直。
在这里插入图片描述

/*
解空间-排列树代码
*/
void swap(int arr[], int i, int j)//交换值
{
	int tmp = arr[i];
	arr[i] = arr[j];
	arr[j] = tmp;
}
void func(int arr[], int i, int length)
{
	if (i == length)//跑到一个叶子节点上了
	{
		for (int j = 0; j < length; ++j)
		{
			cout << arr[j] << " ";
		}
		cout << endl;
	}
	else
	{
		//生成当前i节点的所有孩子节点
		for (int k = i; k < length; ++k)
		{
			swap(arr, i, k);//当前i位置的元素和后边所有元素交换
			func(arr, i + 1, length);//遍历i的一个孩子
			swap(arr, i, k);
			//回溯到父节点,一定要再交换回来,因为生成新的孩子是基于父节点进行元素的交换
		}
	}
}
int main()
{
	int arr[] = { 1,2,3,4 };
	int length = sizeof(arr) / sizeof(arr[0]);
	func(arr, 0, length);

	return 0;
}

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林林林ZEYU

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值