解空间-排列树的理论
原始序列的全排列。不同的排列方式。
比如说1234有很多排列方式,所有的排列方式中,可能只有其中几种排列方式才满足题目的要求。
举个例子:
我们现在想获取1,2,3,4的全排列
枚举法
就是每个元素在各个位置上都出现1遍!

我们现在处理的是第一个位置上的元素,我们拿第一个位置上的元素和每个位置上的元素交换一下,如下图。

也可以这么说:我们先处理第1个位置的元素,我拿第一个位置的元素和每个位置的元素交换一下,这样就可以把每一个元素都在我第一个位置都出现1遍!
首先,我们从第1个位置开始。
第一个位置可以放1,剩下的就是2, 3,4
第一个位置还可以放2,剩下的就是1, 3,4
第一个位置还可以放3,剩下的就是2, 1,4
第一个位置还可以放4,剩下的就是2, 3,1

我们看根节点的左边第一个孩子的处理
现在相当于把第1个位置(元素1)处理完了。然后接下来看第2个位置。
然后在1的位置基础上。拿2和2交换。拿2和3交换。拿2和4交换。

以此类推下去。 我们看根节点的左边第二个孩子的处理。
相当于是第一个位置是确定了,即元素2确定了,我们拿第二个位置的元素1和后面两个元素依次交换位置。

我们在最左的一个节点上,已经解决了前2位的交换。现在前2个固定下来,然后处理3,4位。3和3交换。3和4交换。然后处理第4个位置,4和4交换。

现在最下面这层是前3个元素都固定好了。剩下最后1个元素。就自己和自己交换了。

一个叶子节点代表根节点的其中一个孩子(原序列的一种排列方式)的所有排列的可能。
所有叶子节点的总和就是原序列的全部排列方式。
这样,逻辑上构建出来的解空间树就是排列树了。
原始序列的元素个数是n个的话,有n!个叶子节点。

从上到下,依次少1叉!直到叶子节点是1叉。
排列树的时间复杂度:O(n!)
解空间-排列树的代码实现
我们考虑问题是考虑一层的,考虑的是水平的,递归负责的是垂直。

/*
解空间-排列树代码
*/
void swap(int arr[], int i, int j)//交换值
{
int tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
void func(int arr[], int i, int length)
{
if (i == length)//跑到一个叶子节点上了
{
for (int j = 0; j < length; ++j)
{
cout << arr[j] << " ";
}
cout << endl;
}
else
{
//生成当前i节点的所有孩子节点
for (int k = i; k < length; ++k)
{
swap(arr, i, k);//当前i位置的元素和后边所有元素交换
func(arr, i + 1, length);//遍历i的一个孩子
swap(arr, i, k);
//回溯到父节点,一定要再交换回来,因为生成新的孩子是基于父节点进行元素的交换
}
}
}
int main()
{
int arr[] = { 1,2,3,4 };
int length = sizeof(arr) / sizeof(arr[0]);
func(arr, 0, length);
return 0;
}

本文详细解析了排列树的理论,包括原始序列全排列的多种可能性,通过枚举法逐个元素交换位置,构建了解空间树结构。算法实现部分展示了如何用递归生成排列,并计算n个元素的排列总数。重点在于理解排列树的时间复杂度和代码实例。
1745

被折叠的 条评论
为什么被折叠?



