我们首先来看看RNN的网络结构,如下图所示
xt 表示第t,t=1,2,3…步(step)的输入
st 为隐藏层的第t步的状态,它是网络的记忆单元。
st=f(u×xt+w×st−1) ,其中f一般是非线性的激活函数
本文介绍了LSTM在网络结构、情感分析中的应用,以及词向量模型如Word2Vec。通过深度学习处理自然语言处理任务,如情感分析,使用RNN、LSTM模型进行训练,并展示了一个LSTM情感分析项目的详细流程,包括数据导入、模型构建、超参数调整和训练过程,最终达到较高的测试准确性。
xt 表示第t,t=1,2,3…步(step)的输入
st 为隐藏层的第t步的状态,它是网络的记忆单元。
st=f(u×xt+w×st−1) ,其中f一般是非线性的激活函数

被折叠的 条评论
为什么被折叠?