LG2852/BZOJ1717 「USACO2006DEC」Milk Patterns 离散化+后缀数组

问题描述

LG2852


题解

字符串性质:字符串\(s\)的每个字串等于每个后缀的所有前缀

对输入的东西离散化,然后把数值看做\(\mathrm{ASCII}\)后缀排序

二分答案,二分长度。

显然一段相同的字串,一定是连续一段后缀的公共前缀。

如此\(check\)即可。


\(\mathrm{Code}\)

#include<bits/stdc++.h>
using namespace std;

#define maxn 20007

void read(int &x){
    x=0;char ch=1;int fh;
    while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
    if(ch=='-') fh=-1,ch=getchar();
    else fh=1;
    while(ch>='0'&&ch<='9'){
        x=(x<<1)+(x<<3)+ch-'0';
        ch=getchar();
    }
    x*=fh;
}

struct node{
    int val,id,New;
}st[maxn];

int sa[maxn],n,m,ct[maxn],x[maxn],y[maxn],tot;
int hei[maxn];
int a[maxn],cnt,rk[maxn];
int low,l,r,mid,ans;

bool comp(node a,node b){
    return a.val<b.val;
}

bool cmp(node a,node b){
    return a.id<b.id;
}

void preprocess(){
    sort(st+1,st+n+1,comp);
    for(register int i=1;i<=n;i++){
        if(i==1||(i>1&&st[i].val>st[i-1].val)){
            m++;
        }
        st[i].New=m;
    }
    sort(st+1,st+n+1,cmp);
    for(register int i=1;i<=n;i++){
        a[i]=st[i].New;
    }
    ++m;
}

void SA(){
    for(register int i=1;i<=n;i++) ct[x[i]=a[i]]++;
    for(register int i=2;i<=m;i++) ct[i]+=ct[i-1];
    for(register int i=n;i>=1;i--) sa[ct[x[i]]--]=i;
    for(register int k=1;k<=n;k<<=1){
        int tot=0;
        for(register int i=n-k+1;i<=n;i++) y[++tot]=i;
        for(register int i=1;i<=n;i++) if(sa[i]>k) y[++tot]=sa[i]-k;
        for(register int i=1;i<=m;i++) ct[i]=0;
        for(register int i=1;i<=n;i++) ct[x[i]]++;
        for(register int i=1;i<=m;i++) ct[i]+=ct[i-1];
        for(register int i=n;i>=1;i--) sa[ct[x[y[i]]]--]=y[i],y[i]=0;
        swap(x,y);x[sa[1]]=tot=1;
        for(register int i=2;i<=n;i++)
            if(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k]) x[sa[i]]=tot;
            else x[sa[i]]=++tot;
        if(tot==n) break;
        m=tot;
    }
}

void HEIGHT(){
    int tmp=0;
    for(register int i=1;i<=n;i++) rk[sa[i]]=i;
    for(register int i=1;i<=n;i++){
        if(rk[i]==1) continue;
        if(tmp) --tmp;
        int j=sa[rk[i]-1];
        while(j+tmp<=n&&i+tmp<=n&&a[i+tmp]==a[j+tmp]) ++tmp;
        hei[rk[i]]=tmp;
    }
}

bool check(){
    if(mid==0) return true;
    int lst=0;
    for(register int i=1;i<=n;i++){
        if(hei[i]<mid){//错误笔记:将mid写为m,以后check写传参式的 
            if(i-lst>=low) return true;
            lst=i;
        }
    }
    if(n+1-lst>=low) return true;
    return false;
}

int main(){
    read(n);read(low);
    for(register int i=1;i<=n;i++){
        read(st[i].val);st[i].id=i;
    }
    preprocess();
    SA();HEIGHT();
    l=0,r=n;
    while(l<=r){
        mid=(l+r)>>1;
        if(check()) ans=mid,l=mid+1;
        else r=mid-1;
    }
    printf("%d\n",ans);
    return 0;
}

转载于:https://www.cnblogs.com/liubainian/p/11484892.html

题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值