问题描述
题解
显然是一个高斯消元,但是求的东西比较奇怪
发现这个方程组只关心奇偶性,于是可以用一个\(\mathrm{bitset}\)进行优化,用xor
来进行消元操作。
\(\mathrm{Code}\)
#include<bits/stdc++.h>
using namespace std;
void read(int &x){
x=0;char ch=1;int fh;
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') fh=-1,ch=getchar();
else fh=1;
while(ch>='0'&&ch<='9'){
x=(x<<1)+(x<<3)+ch-'0';
ch=getchar();
}
x*=fh;
}
#define maxn 1007
int n;
bitset<maxn>a[maxn<<1];
int pla,ans,tmp;
int m;
int main(){
read(n);read(m);
for(register int i=1;i<=m;i++){
for(register int j=1;j<=n+1;j++) scanf("%1d",&tmp),a[i][j]=tmp;
}
for(register int i=1;i<=n;i++){
pla=i;
while(pla<=m&&a[pla][i]==0) pla++;
if(pla==m+1){
puts("Cannot Determine");return 0;
}
ans=max(ans,pla);
if(pla!=i) swap(a[pla],a[i]);
for(register int j=1;j<=m;j++){
if(i==j||a[j][i]==0) continue;
a[j]=a[i] xor a[j];
}
}
printf("%d\n",ans);
for(register int i=1;i<=n;i++){
if(a[i][n+1]&1) puts("?y7M#");
else puts("Earth");
}
return 0;
}