常用 麦克劳林 泰勒公式的记忆技巧-----

定义式:

公式1: \small \frac{1}{1-x}=1+x+x^2+....+x^n +o(x^n) ,(x\epsilon (-1,1))

在上式中去取x = -x 可得,

公式2: 

\small \frac{1}{1+x}=1-x+x^2-....+(-1)x^nx^n +o(x^n)

对上式两边积分可得

公式3.

\small ln(1+x)=\int \frac{1}{1+x}dx =\int \left [1-x+x^2-....+(-1)x^nx^n +o(x^n) \right ]dx

\small ln(1+x) = x -\frac{x^2}{2} +\frac{x^3}{3}-...+(-1)^n\frac{ x^{n+1}}{ n+1} +o(x^{n+1})

===

正弦函数是奇函数,所以只含有奇数项。 

公式4:

\small sin(x) =x-\frac{x^3 }{ 3!} +\frac{x^5 }{ 5!}-...+(-1)^{n}\frac{x^{2n+1} }{ (2n+1)!} +o(x^{2n+2}) (n=0,1,2,...)

对上式求导

公式5:

\tiny \dpi{200} \small cos(x)=1-\frac{ x^2}{ 2!} + \frac{ x^4}{ 4!}-...+(-1)^{n}\frac{x^{2n}}{(2n)!} +o(x^{2n+1}) (n=0,1,2,...)

=====

二项式的公式为:

\small (a+b)^n=C_{n}^{0}a^n+C_{n}^{1}a^{n-1}b+C_{n}^{2}a^{n-2}b^{2}+...+C_{n}^{n-1}ab^{n-1}+C_{n}^{n}b^n

令 \small a=1,b=x

\small (a+b)^n=C_{n}^{0}+C_{n}^{1}x+C_{n}^{2}x^{2}+...+C_{n}^{n-1}x^{n-1}+C_{n}^{n}x^n

\small \Rightarrow

(1+x)^n=1+\frac{n}{1}x+\frac{ n(n-2+1)}{ 2!}x^{2}+...+\frac{n(n-1)(n-2)...(n-n+2) }{ (n-1)!}x^{n-1}+\frac{n(n-1)(n-2)...(n-n+1) }{ (n)!}x^{n}

吧上式的中分子中n 用 \LARGE \alpha替换得到推广式子 :

   (1+x)^\alpha =1+\frac{\alpha }{1}x+\frac{ \alpha (\alpha -2+1)}{ 2!}x^{2}+...+\frac{\alpha (\alpha -1)(\alpha -2)...(\alpha -n +2) }{ (n-1)!}x^{n-1}+\frac{\alpha (\alpha -1)(\alpha -2)...(\alpha -n +1) }{ (n)!}x^{n} +o(x^n)

  • 22
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 1/(1-x)的麦克劳级数展开为:1 + x + x^2 + x^3 + ...,因此1/(1-x)的麦克劳级数展开为:1 + x + x^2 + x^3 + ... - (x + x^2 + x^3 + ...) = 1/(1-x) - x/(1-x) = x/(1-x)^2。 ### 回答2: 要求求函数f(x) = 1/(1-x)的麦克劳级数展开。麦克劳级数是一种可以通过将函数展开为无穷级数的方法。它的公式示为:f(x) = f(0) + f'(0)x + f''(0)x^2/2! + f'''(0)x^3/3! + ... 首先,我们需要计算f(x)在x=0处的函数值f(0)以及它的一阶、二阶和三阶导数。然后我们找到每个项的系数,并将它们代入麦克劳级数的公式中。 f(x) = 1/(1-x) f(0) = 1 f'(x) = 1/(1-x)^2 f'(0) = 1 f''(x) = 2/(1-x)^3 f''(0) = 2 f'''(x) = 6/(1-x)^4 f'''(0) = 6 将这些值代入麦克劳级数公式中,我们得到: f(x) = 1 + x + 2x^2/2! + 6x^3/3! + ... 化简后可得: f(x) = 1 + x + x^2 + x^3 + ... 因此,f(x) = 1/(1-x)的麦克劳级数展开为1 + x + x^2 + x^3 + ... 这就是函数f(x) = 1/(1-x)在x=0附近的麦克劳级数展开。 ### 回答3: 要求求解表达式1/(1-x)的麦克劳级数展开。首先,我们需要给出麦克劳级数展开的定义,然后使用相关公式进行推导。 根据麦克劳级数展开的定义,我们可以得到以下公式: f(x) = f(0) + f'(0)x + f''(0)x²/2! + f'''(0)x³/3! + ... 对于表达式1/(1-x),我们需要求出一阶、二阶、三阶、等各阶的导数。 首先,我们可以计算一阶导数: f'(x) = d(1/(1-x))/dx = 1/((1-x)²) 接下来,计算二阶导数: f''(x) = d(1/((1-x)²))/dx = 2/(1-x)³ 再计算三阶导数: f'''(x) = d(2/(1-x)³)/dx = 6/(1-x)⁴ 根据麦克劳级数展开的公式,我们可以得到: f(x) = 1 + x + x² + x³ + ... 将前面计算得到的导数值带入上述公式,我们可以得到麦克劳级数展开式为: f(x) = 1 + x + x² + x³ + ... 以上就是表达式1/(1-x)的麦克劳级数展开。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值