Keras深度学习实战(17)——使用U-Net架构进行图像分割

本文介绍了图像分割的基础概念、类型,并重点讲解了U-Net架构在图像分割中的应用。通过使用U-Net模型,结合预训练的卷积网络,对图像数据进行处理和训练,最终实现对图像中的汽车进行高精度的分割。

0. 前言

我们已经在系列博文中学习了如何检测对象类别以及定位图像中对象的边界框,即图像分类与目标检测。图像分割 (Image Segmentation) 是计算机视觉领域中另一重要和基础性的问题,也是十分具有挑战性的任务之一。在本节中,我们将学习如何使用神经网络模型执行图像分割任务。

1. 图像分割相关研究

1.1 图像分割简介

图像分割是指将图像分成若干互不重叠的子区域,使得同一个子区域内的特征具有一定相似性、不同子区域间特征呈现较为明显的差异。图像分割是是计算机视觉中一项基础的任务,已经广泛应用于许多实际场景中,例如自动驾驶、医学图像处理和面部分割等。

1.2 图像分割分类

按照图像中对象被分割后的结果,可以将图像分割分为语义分割、实例分割和全景分割三种类型,不同类型的分割结果如下图所示。

图像分割
语义分割 (Semantic Segmentation) 是为了便于图像分析而为图像中的每个像素分配标签的过程,属于某个对象的所有像素都被突出显示,比如用值 1<

评论 47
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值