Keras深度学习实战(17)——使用U-Net架构进行图像分割
0. 前言
我们已经在系列博文中学习了如何检测对象类别以及定位图像中对象的边界框,即图像分类与目标检测。图像分割 (Image Segmentation) 是计算机视觉领域中另一重要和基础性的问题,也是十分具有挑战性的任务之一。在本节中,我们将学习如何使用神经网络模型执行图像分割任务。
1. 图像分割相关研究
1.1 图像分割简介
图像分割是指将图像分成若干互不重叠的子区域,使得同一个子区域内的特征具有一定相似性、不同子区域间特征呈现较为明显的差异。图像分割是是计算机视觉中一项基础的任务,已经广泛应用于许多实际场景中,例如自动驾驶、医学图像处理和面部分割等。
1.2 图像分割分类
按照图像中对象被分割后的结果,可以将图像分割分为语义分割、实例分割和全景分割三种类型,不同类型的分割结果如下图所示。

语义分割 (Semantic Segmentation) 是为了便于图像分析而为图像中的每个像素分配标签的过程,属于某个对象的所有像素都被突出显示,比如用值 1<
本文介绍了图像分割的基础概念、类型,并重点讲解了U-Net架构在图像分割中的应用。通过使用U-Net模型,结合预训练的卷积网络,对图像数据进行处理和训练,最终实现对图像中的汽车进行高精度的分割。
订阅专栏 解锁全文
4540

被折叠的 条评论
为什么被折叠?



