Keras深度学习实战(26)——文档向量详解

本文深入介绍了文档向量的概念,探讨了如何使用 Keras 构建神经网络模型来生成文档向量,以捕捉单词上下文信息。通过预处理文本,构建带标签的文档字典,并训练 Skip-Gram 模型,最终得到航空公司 Tweepy 数据集的文档向量,用于识别文档主题。
摘要由CSDN通过智能技术生成

0. 前言

《从零开始构建单词向量》一节中,我们学习了单词向量的基本概念,并且学习了如何生成单词向量,以使语义相似的单词具有相似的单词向量。但是,我们知道许多单词在不同的上下文语境中会有不同的含义,而仅仅使用单词向量并不能体现这种差异,为了解决这一问题,提出了文档向量的概念,用于捕获单词上下文语境信息。

1. 文档向量基本概念

要了解文档向量,我们考虑以下场景。例如,bank 一词在金融(表示银行)和水利(表示河岸)相关主题中均有使用。这时,我们如何确定给定句子或文档中的 bank 究竟是与水利相关还是与金融相关?这就是文档向量所需要解决的问题,文档向量的工作方式与单词向量生成类似,但是增加了段落 ID 的独热编码,如下所示:

段落向量

在上述情况下,段落 ID 包含了仅使用单词无

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值