Keras深度学习实战(36)——基于编码器-解码器的机器翻译模型

本篇Keras深度学习实战介绍了基于编码器-解码器结构的机器翻译模型,通过注意力机制提高模型性能。详细探讨了数据集分析、模型构建和训练过程,展示了如何利用编码器状态和注意力机制进行更精确的翻译,最终实现在测试集上更高的翻译准确率。
摘要由CSDN通过智能技术生成

0. 前言

《机器翻译模型》一节中,我们已经学习了机器翻译的基本概念,并使用 Keras 构建了两种基本的机器翻译模型,但由于在传统模型中所有输入时间戳的信息仅存储在最后一个网络中间状态值中,因此会丢失大量信息。本节中,通过引入编码器-解码器结构改善机器翻译模型,以获得更加优秀的性能。

1. 模型与数据集分析

1.1 数据集分析

在本节中,我们继续使用在《机器翻译模型》一节中使用的数据集,并使用相同的数据预处理过程,因此在继续学习之前,需要结合《机器翻译模型》一节阅读。

1.2 模型分析

针对传统《机器翻译模型

评论 33
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值