粒子群优化在自动超参数优化中的应用实现指南

0. 前言

我们已经了解了超参数优化 (Hyperparameter Optimization, HPO) 问题,在本节中,将使用一些进化计算方法来提高 HPO 的速度和准确性。进化方法提供了优化各种问题搜索的优秀工具集,因此,能够使用进化计算来执行 HPO

1. 使用粒子群优化自动超参数优化

在本节中,介绍在超参数优化 (Hyperparameter Optimization, HPO) 中使用进化计算 (Evolutionary Computation, EC) 的深度学习 ( Deep learning, DL) 方法,首先使用粒子群优化 (Particle Swarm Optimization, PSO) 进行 HPO粒子群优化使用一群粒子来寻找最优解,可以使用 DEAP 简单实现,展示进化计算在解决 HPO 等问题时的强大能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值