粒子群优化在自动超参数优化中的应用实现指南
0. 前言
我们已经了解了超参数优化 (Hyperparameter Optimization, HPO) 问题,在本节中,将使用一些进化计算方法来提高 HPO 的速度和准确性。进化方法提供了优化各种问题搜索的优秀工具集,因此,能够使用进化计算来执行 HPO。
1. 使用粒子群优化自动超参数优化
在本节中,介绍在超参数优化 (Hyperparameter Optimization, HPO) 中使用进化计算 (Evolutionary Computation, EC) 的深度学习 ( Deep learning, DL) 方法,首先使用粒子群优化 (Particle Swarm Optimization, PSO) 进行 HPO。粒子群优化使用一群粒子来寻找最优解,可以使用 DEAP 简单实现,展示进化计算在解决 HPO 等问题时的强大能力。
订阅专栏 解锁全文
951

被折叠的 条评论
为什么被折叠?



