卷积神经网络 (CNN) 原理详解与 Keras 实践

0. 前言

卷积神经网络 (Convolutional Neural Network, CNN) 的提出是为了解决传统神经网络的缺陷。即使对象位于图片中的不同位置或其在图像中具有不同占比,CNN 依旧能够正确的处理这些图像,因此在对象分类/检测任务中更加有效。在本节中,我们将使用 Keras 构建卷积神经网络模型进行图像分类,介绍 CNN 的基础知识,并构建 CNN 模型。

1. 卷积神经网络基本概念

在本节中,首先介绍卷积神经网络 (Convolutional Neural Network, CNN) 的相关概念与组成,了解 CNN 的工作原理。

1.1 卷积

卷积是两个矩阵间的乘法——通常一个矩阵具有较大尺寸,另一个矩阵则较小。要了解卷积,首先讲解以下示例。给定矩阵 A 和矩阵 B 如下:

矩阵

在进行卷积时,我们将较小的矩阵在较大的矩阵上滑动,在上述两个矩阵中,当较小的矩阵 B 需要在较大矩阵

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值