生成模型实战 | ACGAN详解与实现
0. 前言
在生成对抗网络 (Generative Adversarial Network, GAN) 的众多变体中,ACGAN (Auxiliary Classifier GAN) 是一个非常经典且实用的条件生成模型。它的核心思想是:在判别器中除了保留“真假判别”这一任务外,额外加入一个辅助分类器,让判别器同时预测输入样本的类别。这样,生成器在训练时不仅需要“欺骗判别器”,还必须生成能够被正确分类的样本,从而在图像语义和类别可控性上得到显著提升。
这一改进让 ACGAN 能够在条件图像生成中表现出色,在复杂数据集上实现按类别生成的能力。相比于传统条件生成对抗网络 (Conditional GAN, cGAN) 简单地把标签拼接到输入,ACGAN 通过 “辅助分类监督” 提供了更细粒度的学习信号,使得生成器得到的梯度更加稳定和有意义。在本节中,将详细介绍 ACGAN 原理,并使用 PyTorch 构建 ACGAN 模型。
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



